Data exploration and analysis with Python Pandas20 Jan 2023 / 238 minutes to read Elena Daehnhardt |
Introduction
Data science is a multidisciplinary field involving scientific methods, procedures, algorithms, and techniques to extract knowledge and insights from structured and unstructured data. Data analysis uses statistical and computational approaches to identify data patterns, trends, and relationships. It plays a vital role in the data science process. It is typically used to prepare and preprocess the data, perform exploratory data analysis, build and evaluate models, extract insights and make data-driven decisions. In Data Science, we have so many terms explaining concepts and techniques that it is easy to need clarification and get a clear understanding of all data science components and steps.
In this post, I fill the gap by explaining data science’s two essential components: data analysis and exploration. To make things clear and precise, I will outline both approaches, compare them and show the usage of Python Pandas for data exploration and analysis. I will also show several practices using Pandas and graph drawing using Python. Please let me know should you have any questions or comments about this post.
Data Analysis vs. Data Exploration
What is Data Analysis?
Data analysis can help determine patterns, trends, and insights that may not be immediately evident from raw data. This can guide informed decision-making, improved processes and strategies, and the ability to measure the effectiveness of different approaches. Additionally, analyzing data can help see and diagnose issues and can be used to build predictive models that can inform future actions.
These are a few examples of how data analysis can improve business productivity.
- Determining inefficiencies: Businesses can identify areas where operations are taking too long or resources are being wasted by analyzing data from different business processes. This can help them make changes that increase efficiency and lower expenses.
- Targeted marketing: Data analysis can be used to better understand customer behavior and preferences. This helps businesses construct more targeted marketing campaigns that are more likely to be successful, which leads to increased sales and earnings.
- Inventory management: By scrutinizing data on product sales and customer demand, businesses can optimize their stock levels, which can help them avoid stockouts and overstocking.
- Quality control: Data analysis can identify production data patterns, which can help businesses find and fix problems before they result in defective products or customer complaints.
- Predictive care: By analyzing data on equipment performance, companies can predict when maintenance will be needed and organize it proactively, which can prevent breakdowns and improve uptime.
- Fraud detection: Data analysis can identify dishonest behavior patterns, which can help companies detect and prevent fraudulent transactions before they happen.
Data analysis is the process of using statistical and computational methods to extract meaningful insights from data.
The main steps in data analysis typically include the following:
- Defining the problem and goals: This step involves defining the problem you want to solve and the specific questions or hypotheses you want to answer.
- Data preparation: This step involves cleaning and preparing the data for analysis, including loading it into a suitable format, handling missing values, and transforming the data as needed.
- Exploratory Data Analysis: This step involves exploring and summarizing the characteristics of the data, including understanding the structure and distribution of the data.
- Modeling: This step involves building mathematical or statistical models to represent the data. The models can make predictions, classify data or identify patterns.
- Evaluation: This step involves evaluating the performance of the models and comparing them with relevant benchmarks.
- Communication of results: This step involves presenting and interpreting the analysis results clearly and meaningfully, creating a report or a presentation to share the findings.
- Deployment: This step involves taking the results and putting them into action, using the models to make predictions or insights to inform business decisions.
These steps may only sometimes be strictly sequential, and there may be iterations and multiple rounds of analysis as needed to gain a thorough understanding of the data. The steps and techniques will vary depending on the type of data and the problem being addressed.
What is Data Exploration?
Data exploration analyzes and summarizes a dataset to understand its characteristics and properties. This may involve visualizing the data, identifying patterns and trends, and performing statistical analyses. The goal of data exploration is to gain insights into the data that can inform further analysis or modeling.
Data exploration typically includes the following steps:
- Data loading and cleaning: This step involves loading the data into a suitable format, such as a Pandas DataFrame, and cleaning it to remove any errors, missing values, or irrelevant information.
- Data understanding: This step involves understanding the structure of the data, including the number of rows and columns, the data types, and the range of values for each variable.
- Univariate analysis: This step involves analyzing each variable individually to understand its distribution, central tendency, and variability. This can be done using simple statistics, such as mean, median, and standard deviation, and visualizations, such as histograms, box plots, and bar charts.
- Multivariate analysis: This step involves analyzing the relationships between variables. This can be done using visualizations, such as scatter plots and heat maps, and correlation coefficients to measure the strength of the relationship between variables.
- Data transformation: This step involves transforming the data to make it more suitable for analysis. This can include scaling the data, creating new variables, or encoding categorical variables.
- Identifying outliers: This step involves identifying and analyzing any extreme values present in the data which can significantly impact the analysis.
- Data summarisation: This step involves summarizing the main findings of the exploration and creating a report or a presentation to share the results.
These steps are not strictly sequential, and there may be iterations and multiple rounds of exploration to gain a thorough understanding of the data.
Their main differences
Data analysis and data exploration are related but distinct processes. The main differences between the two are:
- Goal: Data analysis aims to extract meaningful insights, inform decisions, and support problem-solving. On the other hand, data exploration seeks to gain a general understanding of the data, identify patterns, and discover relationships.
- Approach: Data analysis is typically more structured and formal, often guided by specific questions or hypotheses. On the other hand, data exploration is more open-ended, allowing you to explore the data without preconceived notions of what you might find.
- Tools: Data analysis typically requires advanced statistical and computational tools to draw inferences from the data. On the other hand, data exploration can be done with various tools, including visualization and simple statistics.
- Output: Data analysis produces quantifiable results, such as statistics and reports. On the other hand, data exploration often results in a deeper understanding of the data and the discovery of new questions to be further analyzed.
- Audience: Data analysis is usually done for a specific audience, such as management or stakeholders. Data exploration is generally done by researchers or data scientists to gain insights and discover new questions.
- Data exploration is often a preliminary step in the data analysis process, and it’s essential to do some level of exploration before diving into the analysis. Still, they are not mutually exclusive, and the two can be combined differently depending on the use case.
Can we accept that data exploration is a step in data analysis?
Yes, data exploration is often considered a step in the data analysis process. Data exploration is the process of gaining an initial understanding of the data, identifying patterns and relationships, and summarizing the main characteristics of the dataset. It is an essential step before starting any data analysis, as it allows you to identify potential issues with the data, such as outliers, missing values, and data errors, and to understand the distribution, central tendency, and variability of the variables.
Data exploration can also help identify the relationships between variables, which can inform the choice of models, techniques, and methods for the data analysis. Additionally, data exploration can assist in identifying new questions or hypotheses that can be further explored during the data analysis.
It is important to note that data exploration and analysis are not mutually exclusive and can be combined differently depending on the use case. The level and depth of data exploration can vary depending on the goals and complexity of the data analysis project.
Python’s Pandas library
Pandas is Python’s powerful and popular open-source data analysis and manipulation library, providing functions for working with time series data, filtering, grouping, transforming data, and handling missing values. Pandas supports reading and writing various file formats, such as CSV and SQL. Pandas is an integral part of many data analysis and machine learning pipelines. It is better fitting for working with data programmatically because of its integration with the rest of the Python ecosystem.
In Pandas documentation we read:
pandas is an open source, BSD-licensed library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming language.
When reading this definition above, I wanted to know whether we can confidently define Pandas as a complete data analysis solution and why. Keep reading.
Installing and Importing Pandas
Installing Pandas
To install the Pandas package on Mac OS, you must have Python and pip (the Python package manager) installed on your system. To install the latest version of Pandas and all its dependencies, run this command in a terminal window:
pip install pandas
Suppose you still need to install Python and pip. In that case, you can download and install the latest version of Python from the official Python website (https://www.python.org/downloads/). This will install Python and pip on your system. Once Python and pip are installed, you can use pip to install the Pandas package by running the command above.
Alternatively, you can install Pandas using the Anaconda distribution, which comes with a pre-installed version of Pandas and many other popular data science libraries. To install Anaconda, visit the Anaconda website (https://www.anaconda.com/products/individual) and follow the instructions to download and install the latest version.
Importing Pandas
You must use the import statement to import the Pandas library into a Python script. This will import the Pandas library and give it the alias “pd”. Further, we will use the alias “pd” to access the functions and methods in the Pandas library.
import pandas as pd
Exploring the Titanic dataset
In the previous section, we have defined the main concepts of Data Science, Data Exploration, and Data Analysis. It is clear to me that Data Exploration is one of the steps in the stricter and former process of Data analysis, often requiring a definition of the hypothesis that we methodically explore using statistical and computational techniques. Most of the Pandas functionality we will see in this post mainly relates to data exploration. I will write up the differences and the exact Pandas features related to the data analysis.
Thus, in this post, we will use Pandas for “understanding” or exploring the Titanic dataset. The Titanic dataset is a well-known dataset that contains information about the passengers on the Titanic, a British passenger liner that sank in the North Atlantic Ocean in 1912 after colliding with an iceberg.
The Titanic dataset is a good dataset for learning data manipulation and analysis techniques, as it has a relatively small size and is easy to work with. The dataset includes information about each passenger, such as their name, age, gender, class (i.e., first, second, or third class), the fare paid, and whether they survived the disaster.
Loading Titanic Dataset
Pandas provides several methods to directly read data from various sources, for instance, from a webpage with the help of function pd.read_html(), or from a CSV file uploaded to a web server with the help of pd.read_csv() function using URL string pointing to a Comma-separated file (CSV).
url = 'https://raw.githubusercontent.com/edaehn/python_tutorials/main/titanic/train.csv'
titanic_df = pd.read_csv(url)
This will download the CSV file and load it into a Pandas DataFrame.
index | PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.25 | NaN | S |
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Thayer) | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.925 | NaN | S |
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1 | C123 | S |
4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.05 | NaN | S |
5 | 6 | 0 | 3 | Moran, Mr. James | male | NaN | 0 | 0 | 330877 | 8.4583 | NaN | Q |
6 | 7 | 0 | 1 | McCarthy, Mr. Timothy J | male | 54.0 | 0 | 0 | 17463 | 51.8625 | E46 | S |
7 | 8 | 0 | 3 | Palsson, Master. Gosta Leonard | male | 2.0 | 3 | 1 | 349909 | 21.075 | NaN | S |
8 | 9 | 1 | 3 | Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) | female | 27.0 | 0 | 2 | 347742 | 11.1333 | NaN | S |
9 | 10 | 1 | 2 | Nasser, Mrs. Nicholas (Adele Achem) | female | 14.0 | 1 | 0 | 237736 | 30.0708 | NaN | C |
10 | 11 | 1 | 3 | Sandstrom, Miss. Marguerite Rut | female | 4.0 | 1 | 1 | PP 9549 | 16.7 | G6 | S |
11 | 12 | 1 | 1 | Bonnell, Miss. Elizabeth | female | 58.0 | 0 | 0 | 113783 | 26.55 | C103 | S |
12 | 13 | 0 | 3 | Saundercock, Mr. William Henry | male | 20.0 | 0 | 0 | A/5. 2151 | 8.05 | NaN | S |
13 | 14 | 0 | 3 | Andersson, Mr. Anders Johan | male | 39.0 | 1 | 5 | 347082 | 31.275 | NaN | S |
14 | 15 | 0 | 3 | Vestrom, Miss. Hulda Amanda Adolfina | female | 14.0 | 0 | 0 | 350406 | 7.8542 | NaN | S |
15 | 16 | 1 | 2 | Hewlett, Mrs. (Mary D Kingcome) | female | 55.0 | 0 | 0 | 248706 | 16.0 | NaN | S |
16 | 17 | 0 | 3 | Rice, Master. Eugene | male | 2.0 | 4 | 1 | 382652 | 29.125 | NaN | Q |
17 | 18 | 1 | 2 | Williams, Mr. Charles Eugene | male | NaN | 0 | 0 | 244373 | 13.0 | NaN | S |
18 | 19 | 0 | 3 | Vander Planke, Mrs. Julius (Emelia Maria Vandemoortele) | female | 31.0 | 1 | 0 | 345763 | 18.0 | NaN | S |
19 | 20 | 1 | 3 | Masselmani, Mrs. Fatima | female | NaN | 0 | 0 | 2649 | 7.225 | NaN | C |
20 | 21 | 0 | 2 | Fynney, Mr. Joseph J | male | 35.0 | 0 | 0 | 239865 | 26.0 | NaN | S |
21 | 22 | 1 | 2 | Beesley, Mr. Lawrence | male | 34.0 | 0 | 0 | 248698 | 13.0 | D56 | S |
22 | 23 | 1 | 3 | McGowan, Miss. Anna “Annie” | female | 15.0 | 0 | 0 | 330923 | 8.0292 | NaN | Q |
23 | 24 | 1 | 1 | Sloper, Mr. William Thompson | male | 28.0 | 0 | 0 | 113788 | 35.5 | A6 | S |
24 | 25 | 0 | 3 | Palsson, Miss. Torborg Danira | female | 8.0 | 3 | 1 | 349909 | 21.075 | NaN | S |
25 | 26 | 1 | 3 | Asplund, Mrs. Carl Oscar (Selma Augusta Emilia Johansson) | female | 38.0 | 1 | 5 | 347077 | 31.3875 | NaN | S |
26 | 27 | 0 | 3 | Emir, Mr. Farred Chehab | male | NaN | 0 | 0 | 2631 | 7.225 | NaN | C |
27 | 28 | 0 | 1 | Fortune, Mr. Charles Alexander | male | 19.0 | 3 | 2 | 19950 | 263.0 | C23 C25 C27 | S |
28 | 29 | 1 | 3 | O’Dwyer, Miss. Ellen “Nellie” | female | NaN | 0 | 0 | 330959 | 7.8792 | NaN | Q |
29 | 30 | 0 | 3 | Todoroff, Mr. Lalio | male | NaN | 0 | 0 | 349216 | 7.8958 | NaN | S |
30 | 31 | 0 | 1 | Uruchurtu, Don. Manuel E | male | 40.0 | 0 | 0 | PC 17601 | 27.7208 | NaN | C |
31 | 32 | 1 | 1 | Spencer, Mrs. William Augustus (Marie Eugenie) | female | NaN | 1 | 0 | PC 17569 | 146.5208 | B78 | C |
32 | 33 | 1 | 3 | Glynn, Miss. Mary Agatha | female | NaN | 0 | 0 | 335677 | 7.75 | NaN | Q |
33 | 34 | 0 | 2 | Wheadon, Mr. Edward H | male | 66.0 | 0 | 0 | C.A. 24579 | 10.5 | NaN | S |
34 | 35 | 0 | 1 | Meyer, Mr. Edgar Joseph | male | 28.0 | 1 | 0 | PC 17604 | 82.1708 | NaN | C |
35 | 36 | 0 | 1 | Holverson, Mr. Alexander Oskar | male | 42.0 | 1 | 0 | 113789 | 52.0 | NaN | S |
36 | 37 | 1 | 3 | Mamee, Mr. Hanna | male | NaN | 0 | 0 | 2677 | 7.2292 | NaN | C |
37 | 38 | 0 | 3 | Cann, Mr. Ernest Charles | male | 21.0 | 0 | 0 | A./5. 2152 | 8.05 | NaN | S |
38 | 39 | 0 | 3 | Vander Planke, Miss. Augusta Maria | female | 18.0 | 2 | 0 | 345764 | 18.0 | NaN | S |
39 | 40 | 1 | 3 | Nicola-Yarred, Miss. Jamila | female | 14.0 | 1 | 0 | 2651 | 11.2417 | NaN | C |
40 | 41 | 0 | 3 | Ahlin, Mrs. Johan (Johanna Persdotter Larsson) | female | 40.0 | 1 | 0 | 7546 | 9.475 | NaN | S |
41 | 42 | 0 | 2 | Turpin, Mrs. William John Robert (Dorothy Ann Wonnacott) | female | 27.0 | 1 | 0 | 11668 | 21.0 | NaN | S |
42 | 43 | 0 | 3 | Kraeff, Mr. Theodor | male | NaN | 0 | 0 | 349253 | 7.8958 | NaN | C |
43 | 44 | 1 | 2 | Laroche, Miss. Simonne Marie Anne Andree | female | 3.0 | 1 | 2 | SC/Paris 2123 | 41.5792 | NaN | C |
44 | 45 | 1 | 3 | Devaney, Miss. Margaret Delia | female | 19.0 | 0 | 0 | 330958 | 7.8792 | NaN | Q |
45 | 46 | 0 | 3 | Rogers, Mr. William John | male | NaN | 0 | 0 | S.C./A.4. 23567 | 8.05 | NaN | S |
46 | 47 | 0 | 3 | Lennon, Mr. Denis | male | NaN | 1 | 0 | 370371 | 15.5 | NaN | Q |
47 | 48 | 1 | 3 | O’Driscoll, Miss. Bridget | female | NaN | 0 | 0 | 14311 | 7.75 | NaN | Q |
48 | 49 | 0 | 3 | Samaan, Mr. Youssef | male | NaN | 2 | 0 | 2662 | 21.6792 | NaN | C |
49 | 50 | 0 | 3 | Arnold-Franchi, Mrs. Josef (Josefine Franchi) | female | 18.0 | 1 | 0 | 349237 | 17.8 | NaN | S |
50 | 51 | 0 | 3 | Panula, Master. Juha Niilo | male | 7.0 | 4 | 1 | 3101295 | 39.6875 | NaN | S |
51 | 52 | 0 | 3 | Nosworthy, Mr. Richard Cater | male | 21.0 | 0 | 0 | A/4. 39886 | 7.8 | NaN | S |
52 | 53 | 1 | 1 | Harper, Mrs. Henry Sleeper (Myna Haxtun) | female | 49.0 | 1 | 0 | PC 17572 | 76.7292 | D33 | C |
53 | 54 | 1 | 2 | Faunthorpe, Mrs. Lizzie (Elizabeth Anne Wilkinson) | female | 29.0 | 1 | 0 | 2926 | 26.0 | NaN | S |
54 | 55 | 0 | 1 | Ostby, Mr. Engelhart Cornelius | male | 65.0 | 0 | 1 | 113509 | 61.9792 | B30 | C |
55 | 56 | 1 | 1 | Woolner, Mr. Hugh | male | NaN | 0 | 0 | 19947 | 35.5 | C52 | S |
56 | 57 | 1 | 2 | Rugg, Miss. Emily | female | 21.0 | 0 | 0 | C.A. 31026 | 10.5 | NaN | S |
57 | 58 | 0 | 3 | Novel, Mr. Mansouer | male | 28.5 | 0 | 0 | 2697 | 7.2292 | NaN | C |
58 | 59 | 1 | 2 | West, Miss. Constance Mirium | female | 5.0 | 1 | 2 | C.A. 34651 | 27.75 | NaN | S |
59 | 60 | 0 | 3 | Goodwin, Master. William Frederick | male | 11.0 | 5 | 2 | CA 2144 | 46.9 | NaN | S |
60 | 61 | 0 | 3 | Sirayanian, Mr. Orsen | male | 22.0 | 0 | 0 | 2669 | 7.2292 | NaN | C |
61 | 62 | 1 | 1 | Icard, Miss. Amelie | female | 38.0 | 0 | 0 | 113572 | 80.0 | B28 | NaN |
62 | 63 | 0 | 1 | Harris, Mr. Henry Birkhardt | male | 45.0 | 1 | 0 | 36973 | 83.475 | C83 | S |
63 | 64 | 0 | 3 | Skoog, Master. Harald | male | 4.0 | 3 | 2 | 347088 | 27.9 | NaN | S |
64 | 65 | 0 | 1 | Stewart, Mr. Albert A | male | NaN | 0 | 0 | PC 17605 | 27.7208 | NaN | C |
65 | 66 | 1 | 3 | Moubarek, Master. Gerios | male | NaN | 1 | 1 | 2661 | 15.2458 | NaN | C |
66 | 67 | 1 | 2 | Nye, Mrs. (Elizabeth Ramell) | female | 29.0 | 0 | 0 | C.A. 29395 | 10.5 | F33 | S |
67 | 68 | 0 | 3 | Crease, Mr. Ernest James | male | 19.0 | 0 | 0 | S.P. 3464 | 8.1583 | NaN | S |
68 | 69 | 1 | 3 | Andersson, Miss. Erna Alexandra | female | 17.0 | 4 | 2 | 3101281 | 7.925 | NaN | S |
69 | 70 | 0 | 3 | Kink, Mr. Vincenz | male | 26.0 | 2 | 0 | 315151 | 8.6625 | NaN | S |
70 | 71 | 0 | 2 | Jenkin, Mr. Stephen Curnow | male | 32.0 | 0 | 0 | C.A. 33111 | 10.5 | NaN | S |
71 | 72 | 0 | 3 | Goodwin, Miss. Lillian Amy | female | 16.0 | 5 | 2 | CA 2144 | 46.9 | NaN | S |
72 | 73 | 0 | 2 | Hood, Mr. Ambrose Jr | male | 21.0 | 0 | 0 | S.O.C. 14879 | 73.5 | NaN | S |
73 | 74 | 0 | 3 | Chronopoulos, Mr. Apostolos | male | 26.0 | 1 | 0 | 2680 | 14.4542 | NaN | C |
74 | 75 | 1 | 3 | Bing, Mr. Lee | male | 32.0 | 0 | 0 | 1601 | 56.4958 | NaN | S |
75 | 76 | 0 | 3 | Moen, Mr. Sigurd Hansen | male | 25.0 | 0 | 0 | 348123 | 7.65 | F G73 | S |
76 | 77 | 0 | 3 | Staneff, Mr. Ivan | male | NaN | 0 | 0 | 349208 | 7.8958 | NaN | S |
77 | 78 | 0 | 3 | Moutal, Mr. Rahamin Haim | male | NaN | 0 | 0 | 374746 | 8.05 | NaN | S |
78 | 79 | 1 | 2 | Caldwell, Master. Alden Gates | male | 0.83 | 0 | 2 | 248738 | 29.0 | NaN | S |
79 | 80 | 1 | 3 | Dowdell, Miss. Elizabeth | female | 30.0 | 0 | 0 | 364516 | 12.475 | NaN | S |
80 | 81 | 0 | 3 | Waelens, Mr. Achille | male | 22.0 | 0 | 0 | 345767 | 9.0 | NaN | S |
81 | 82 | 1 | 3 | Sheerlinck, Mr. Jan Baptist | male | 29.0 | 0 | 0 | 345779 | 9.5 | NaN | S |
82 | 83 | 1 | 3 | McDermott, Miss. Brigdet Delia | female | NaN | 0 | 0 | 330932 | 7.7875 | NaN | Q |
83 | 84 | 0 | 1 | Carrau, Mr. Francisco M | male | 28.0 | 0 | 0 | 113059 | 47.1 | NaN | S |
84 | 85 | 1 | 2 | Ilett, Miss. Bertha | female | 17.0 | 0 | 0 | SO/C 14885 | 10.5 | NaN | S |
85 | 86 | 1 | 3 | Backstrom, Mrs. Karl Alfred (Maria Mathilda Gustafsson) | female | 33.0 | 3 | 0 | 3101278 | 15.85 | NaN | S |
86 | 87 | 0 | 3 | Ford, Mr. William Neal | male | 16.0 | 1 | 3 | W./C. 6608 | 34.375 | NaN | S |
87 | 88 | 0 | 3 | Slocovski, Mr. Selman Francis | male | NaN | 0 | 0 | SOTON/OQ 392086 | 8.05 | NaN | S |
88 | 89 | 1 | 1 | Fortune, Miss. Mabel Helen | female | 23.0 | 3 | 2 | 19950 | 263.0 | C23 C25 C27 | S |
89 | 90 | 0 | 3 | Celotti, Mr. Francesco | male | 24.0 | 0 | 0 | 343275 | 8.05 | NaN | S |
90 | 91 | 0 | 3 | Christmann, Mr. Emil | male | 29.0 | 0 | 0 | 343276 | 8.05 | NaN | S |
91 | 92 | 0 | 3 | Andreasson, Mr. Paul Edvin | male | 20.0 | 0 | 0 | 347466 | 7.8542 | NaN | S |
92 | 93 | 0 | 1 | Chaffee, Mr. Herbert Fuller | male | 46.0 | 1 | 0 | W.E.P. 5734 | 61.175 | E31 | S |
93 | 94 | 0 | 3 | Dean, Mr. Bertram Frank | male | 26.0 | 1 | 2 | C.A. 2315 | 20.575 | NaN | S |
94 | 95 | 0 | 3 | Coxon, Mr. Daniel | male | 59.0 | 0 | 0 | 364500 | 7.25 | NaN | S |
95 | 96 | 0 | 3 | Shorney, Mr. Charles Joseph | male | NaN | 0 | 0 | 374910 | 8.05 | NaN | S |
96 | 97 | 0 | 1 | Goldschmidt, Mr. George B | male | 71.0 | 0 | 0 | PC 17754 | 34.6542 | A5 | C |
97 | 98 | 1 | 1 | Greenfield, Mr. William Bertram | male | 23.0 | 0 | 1 | PC 17759 | 63.3583 | D10 D12 | C |
98 | 99 | 1 | 2 | Doling, Mrs. John T (Ada Julia Bone) | female | 34.0 | 0 | 1 | 231919 | 23.0 | NaN | S |
99 | 100 | 0 | 2 | Kantor, Mr. Sinai | male | 34.0 | 1 | 0 | 244367 | 26.0 | NaN | S |
100 | 101 | 0 | 3 | Petranec, Miss. Matilda | female | 28.0 | 0 | 0 | 349245 | 7.8958 | NaN | S |
101 | 102 | 0 | 3 | Petroff, Mr. Pastcho (“Pentcho”) | male | NaN | 0 | 0 | 349215 | 7.8958 | NaN | S |
102 | 103 | 0 | 1 | White, Mr. Richard Frasar | male | 21.0 | 0 | 1 | 35281 | 77.2875 | D26 | S |
103 | 104 | 0 | 3 | Johansson, Mr. Gustaf Joel | male | 33.0 | 0 | 0 | 7540 | 8.6542 | NaN | S |
104 | 105 | 0 | 3 | Gustafsson, Mr. Anders Vilhelm | male | 37.0 | 2 | 0 | 3101276 | 7.925 | NaN | S |
105 | 106 | 0 | 3 | Mionoff, Mr. Stoytcho | male | 28.0 | 0 | 0 | 349207 | 7.8958 | NaN | S |
106 | 107 | 1 | 3 | Salkjelsvik, Miss. Anna Kristine | female | 21.0 | 0 | 0 | 343120 | 7.65 | NaN | S |
107 | 108 | 1 | 3 | Moss, Mr. Albert Johan | male | NaN | 0 | 0 | 312991 | 7.775 | NaN | S |
108 | 109 | 0 | 3 | Rekic, Mr. Tido | male | 38.0 | 0 | 0 | 349249 | 7.8958 | NaN | S |
109 | 110 | 1 | 3 | Moran, Miss. Bertha | female | NaN | 1 | 0 | 371110 | 24.15 | NaN | Q |
110 | 111 | 0 | 1 | Porter, Mr. Walter Chamberlain | male | 47.0 | 0 | 0 | 110465 | 52.0 | C110 | S |
111 | 112 | 0 | 3 | Zabour, Miss. Hileni | female | 14.5 | 1 | 0 | 2665 | 14.4542 | NaN | C |
112 | 113 | 0 | 3 | Barton, Mr. David John | male | 22.0 | 0 | 0 | 324669 | 8.05 | NaN | S |
113 | 114 | 0 | 3 | Jussila, Miss. Katriina | female | 20.0 | 1 | 0 | 4136 | 9.825 | NaN | S |
114 | 115 | 0 | 3 | Attalah, Miss. Malake | female | 17.0 | 0 | 0 | 2627 | 14.4583 | NaN | C |
115 | 116 | 0 | 3 | Pekoniemi, Mr. Edvard | male | 21.0 | 0 | 0 | STON/O 2. 3101294 | 7.925 | NaN | S |
116 | 117 | 0 | 3 | Connors, Mr. Patrick | male | 70.5 | 0 | 0 | 370369 | 7.75 | NaN | Q |
117 | 118 | 0 | 2 | Turpin, Mr. William John Robert | male | 29.0 | 1 | 0 | 11668 | 21.0 | NaN | S |
118 | 119 | 0 | 1 | Baxter, Mr. Quigg Edmond | male | 24.0 | 0 | 1 | PC 17558 | 247.5208 | B58 B60 | C |
119 | 120 | 0 | 3 | Andersson, Miss. Ellis Anna Maria | female | 2.0 | 4 | 2 | 347082 | 31.275 | NaN | S |
120 | 121 | 0 | 2 | Hickman, Mr. Stanley George | male | 21.0 | 2 | 0 | S.O.C. 14879 | 73.5 | NaN | S |
121 | 122 | 0 | 3 | Moore, Mr. Leonard Charles | male | NaN | 0 | 0 | A4. 54510 | 8.05 | NaN | S |
122 | 123 | 0 | 2 | Nasser, Mr. Nicholas | male | 32.5 | 1 | 0 | 237736 | 30.0708 | NaN | C |
123 | 124 | 1 | 2 | Webber, Miss. Susan | female | 32.5 | 0 | 0 | 27267 | 13.0 | E101 | S |
124 | 125 | 0 | 1 | White, Mr. Percival Wayland | male | 54.0 | 0 | 1 | 35281 | 77.2875 | D26 | S |
125 | 126 | 1 | 3 | Nicola-Yarred, Master. Elias | male | 12.0 | 1 | 0 | 2651 | 11.2417 | NaN | C |
126 | 127 | 0 | 3 | McMahon, Mr. Martin | male | NaN | 0 | 0 | 370372 | 7.75 | NaN | Q |
127 | 128 | 1 | 3 | Madsen, Mr. Fridtjof Arne | male | 24.0 | 0 | 0 | C 17369 | 7.1417 | NaN | S |
128 | 129 | 1 | 3 | Peter, Miss. Anna | female | NaN | 1 | 1 | 2668 | 22.3583 | F E69 | C |
129 | 130 | 0 | 3 | Ekstrom, Mr. Johan | male | 45.0 | 0 | 0 | 347061 | 6.975 | NaN | S |
130 | 131 | 0 | 3 | Drazenoic, Mr. Jozef | male | 33.0 | 0 | 0 | 349241 | 7.8958 | NaN | C |
131 | 132 | 0 | 3 | Coelho, Mr. Domingos Fernandeo | male | 20.0 | 0 | 0 | SOTON/O.Q. 3101307 | 7.05 | NaN | S |
132 | 133 | 0 | 3 | Robins, Mrs. Alexander A (Grace Charity Laury) | female | 47.0 | 1 | 0 | A/5. 3337 | 14.5 | NaN | S |
133 | 134 | 1 | 2 | Weisz, Mrs. Leopold (Mathilde Francoise Pede) | female | 29.0 | 1 | 0 | 228414 | 26.0 | NaN | S |
134 | 135 | 0 | 2 | Sobey, Mr. Samuel James Hayden | male | 25.0 | 0 | 0 | C.A. 29178 | 13.0 | NaN | S |
135 | 136 | 0 | 2 | Richard, Mr. Emile | male | 23.0 | 0 | 0 | SC/PARIS 2133 | 15.0458 | NaN | C |
136 | 137 | 1 | 1 | Newsom, Miss. Helen Monypeny | female | 19.0 | 0 | 2 | 11752 | 26.2833 | D47 | S |
137 | 138 | 0 | 1 | Futrelle, Mr. Jacques Heath | male | 37.0 | 1 | 0 | 113803 | 53.1 | C123 | S |
138 | 139 | 0 | 3 | Osen, Mr. Olaf Elon | male | 16.0 | 0 | 0 | 7534 | 9.2167 | NaN | S |
139 | 140 | 0 | 1 | Giglio, Mr. Victor | male | 24.0 | 0 | 0 | PC 17593 | 79.2 | B86 | C |
140 | 141 | 0 | 3 | Boulos, Mrs. Joseph (Sultana) | female | NaN | 0 | 2 | 2678 | 15.2458 | NaN | C |
141 | 142 | 1 | 3 | Nysten, Miss. Anna Sofia | female | 22.0 | 0 | 0 | 347081 | 7.75 | NaN | S |
142 | 143 | 1 | 3 | Hakkarainen, Mrs. Pekka Pietari (Elin Matilda Dolck) | female | 24.0 | 1 | 0 | STON/O2. 3101279 | 15.85 | NaN | S |
143 | 144 | 0 | 3 | Burke, Mr. Jeremiah | male | 19.0 | 0 | 0 | 365222 | 6.75 | NaN | Q |
144 | 145 | 0 | 2 | Andrew, Mr. Edgardo Samuel | male | 18.0 | 0 | 0 | 231945 | 11.5 | NaN | S |
145 | 146 | 0 | 2 | Nicholls, Mr. Joseph Charles | male | 19.0 | 1 | 1 | C.A. 33112 | 36.75 | NaN | S |
146 | 147 | 1 | 3 | Andersson, Mr. August Edvard (“Wennerstrom”) | male | 27.0 | 0 | 0 | 350043 | 7.7958 | NaN | S |
147 | 148 | 0 | 3 | Ford, Miss. Robina Maggie “Ruby” | female | 9.0 | 2 | 2 | W./C. 6608 | 34.375 | NaN | S |
148 | 149 | 0 | 2 | Navratil, Mr. Michel (“Louis M Hoffman”) | male | 36.5 | 0 | 2 | 230080 | 26.0 | F2 | S |
149 | 150 | 0 | 2 | Byles, Rev. Thomas Roussel Davids | male | 42.0 | 0 | 0 | 244310 | 13.0 | NaN | S |
150 | 151 | 0 | 2 | Bateman, Rev. Robert James | male | 51.0 | 0 | 0 | S.O.P. 1166 | 12.525 | NaN | S |
151 | 152 | 1 | 1 | Pears, Mrs. Thomas (Edith Wearne) | female | 22.0 | 1 | 0 | 113776 | 66.6 | C2 | S |
152 | 153 | 0 | 3 | Meo, Mr. Alfonzo | male | 55.5 | 0 | 0 | A.5. 11206 | 8.05 | NaN | S |
153 | 154 | 0 | 3 | van Billiard, Mr. Austin Blyler | male | 40.5 | 0 | 2 | A/5. 851 | 14.5 | NaN | S |
154 | 155 | 0 | 3 | Olsen, Mr. Ole Martin | male | NaN | 0 | 0 | Fa 265302 | 7.3125 | NaN | S |
155 | 156 | 0 | 1 | Williams, Mr. Charles Duane | male | 51.0 | 0 | 1 | PC 17597 | 61.3792 | NaN | C |
156 | 157 | 1 | 3 | Gilnagh, Miss. Katherine “Katie” | female | 16.0 | 0 | 0 | 35851 | 7.7333 | NaN | Q |
157 | 158 | 0 | 3 | Corn, Mr. Harry | male | 30.0 | 0 | 0 | SOTON/OQ 392090 | 8.05 | NaN | S |
158 | 159 | 0 | 3 | Smiljanic, Mr. Mile | male | NaN | 0 | 0 | 315037 | 8.6625 | NaN | S |
159 | 160 | 0 | 3 | Sage, Master. Thomas Henry | male | NaN | 8 | 2 | CA. 2343 | 69.55 | NaN | S |
160 | 161 | 0 | 3 | Cribb, Mr. John Hatfield | male | 44.0 | 0 | 1 | 371362 | 16.1 | NaN | S |
161 | 162 | 1 | 2 | Watt, Mrs. James (Elizabeth “Bessie” Inglis Milne) | female | 40.0 | 0 | 0 | C.A. 33595 | 15.75 | NaN | S |
162 | 163 | 0 | 3 | Bengtsson, Mr. John Viktor | male | 26.0 | 0 | 0 | 347068 | 7.775 | NaN | S |
163 | 164 | 0 | 3 | Calic, Mr. Jovo | male | 17.0 | 0 | 0 | 315093 | 8.6625 | NaN | S |
164 | 165 | 0 | 3 | Panula, Master. Eino Viljami | male | 1.0 | 4 | 1 | 3101295 | 39.6875 | NaN | S |
165 | 166 | 1 | 3 | Goldsmith, Master. Frank John William “Frankie” | male | 9.0 | 0 | 2 | 363291 | 20.525 | NaN | S |
166 | 167 | 1 | 1 | Chibnall, Mrs. (Edith Martha Bowerman) | female | NaN | 0 | 1 | 113505 | 55.0 | E33 | S |
167 | 168 | 0 | 3 | Skoog, Mrs. William (Anna Bernhardina Karlsson) | female | 45.0 | 1 | 4 | 347088 | 27.9 | NaN | S |
168 | 169 | 0 | 1 | Baumann, Mr. John D | male | NaN | 0 | 0 | PC 17318 | 25.925 | NaN | S |
169 | 170 | 0 | 3 | Ling, Mr. Lee | male | 28.0 | 0 | 0 | 1601 | 56.4958 | NaN | S |
170 | 171 | 0 | 1 | Van der hoef, Mr. Wyckoff | male | 61.0 | 0 | 0 | 111240 | 33.5 | B19 | S |
171 | 172 | 0 | 3 | Rice, Master. Arthur | male | 4.0 | 4 | 1 | 382652 | 29.125 | NaN | Q |
172 | 173 | 1 | 3 | Johnson, Miss. Eleanor Ileen | female | 1.0 | 1 | 1 | 347742 | 11.1333 | NaN | S |
173 | 174 | 0 | 3 | Sivola, Mr. Antti Wilhelm | male | 21.0 | 0 | 0 | STON/O 2. 3101280 | 7.925 | NaN | S |
174 | 175 | 0 | 1 | Smith, Mr. James Clinch | male | 56.0 | 0 | 0 | 17764 | 30.6958 | A7 | C |
175 | 176 | 0 | 3 | Klasen, Mr. Klas Albin | male | 18.0 | 1 | 1 | 350404 | 7.8542 | NaN | S |
176 | 177 | 0 | 3 | Lefebre, Master. Henry Forbes | male | NaN | 3 | 1 | 4133 | 25.4667 | NaN | S |
177 | 178 | 0 | 1 | Isham, Miss. Ann Elizabeth | female | 50.0 | 0 | 0 | PC 17595 | 28.7125 | C49 | C |
178 | 179 | 0 | 2 | Hale, Mr. Reginald | male | 30.0 | 0 | 0 | 250653 | 13.0 | NaN | S |
179 | 180 | 0 | 3 | Leonard, Mr. Lionel | male | 36.0 | 0 | 0 | LINE | 0.0 | NaN | S |
180 | 181 | 0 | 3 | Sage, Miss. Constance Gladys | female | NaN | 8 | 2 | CA. 2343 | 69.55 | NaN | S |
181 | 182 | 0 | 2 | Pernot, Mr. Rene | male | NaN | 0 | 0 | SC/PARIS 2131 | 15.05 | NaN | C |
182 | 183 | 0 | 3 | Asplund, Master. Clarence Gustaf Hugo | male | 9.0 | 4 | 2 | 347077 | 31.3875 | NaN | S |
183 | 184 | 1 | 2 | Becker, Master. Richard F | male | 1.0 | 2 | 1 | 230136 | 39.0 | F4 | S |
184 | 185 | 1 | 3 | Kink-Heilmann, Miss. Luise Gretchen | female | 4.0 | 0 | 2 | 315153 | 22.025 | NaN | S |
185 | 186 | 0 | 1 | Rood, Mr. Hugh Roscoe | male | NaN | 0 | 0 | 113767 | 50.0 | A32 | S |
186 | 187 | 1 | 3 | O’Brien, Mrs. Thomas (Johanna “Hannah” Godfrey) | female | NaN | 1 | 0 | 370365 | 15.5 | NaN | Q |
187 | 188 | 1 | 1 | Romaine, Mr. Charles Hallace (“Mr C Rolmane”) | male | 45.0 | 0 | 0 | 111428 | 26.55 | NaN | S |
188 | 189 | 0 | 3 | Bourke, Mr. John | male | 40.0 | 1 | 1 | 364849 | 15.5 | NaN | Q |
189 | 190 | 0 | 3 | Turcin, Mr. Stjepan | male | 36.0 | 0 | 0 | 349247 | 7.8958 | NaN | S |
190 | 191 | 1 | 2 | Pinsky, Mrs. (Rosa) | female | 32.0 | 0 | 0 | 234604 | 13.0 | NaN | S |
191 | 192 | 0 | 2 | Carbines, Mr. William | male | 19.0 | 0 | 0 | 28424 | 13.0 | NaN | S |
192 | 193 | 1 | 3 | Andersen-Jensen, Miss. Carla Christine Nielsine | female | 19.0 | 1 | 0 | 350046 | 7.8542 | NaN | S |
193 | 194 | 1 | 2 | Navratil, Master. Michel M | male | 3.0 | 1 | 1 | 230080 | 26.0 | F2 | S |
194 | 195 | 1 | 1 | Brown, Mrs. James Joseph (Margaret Tobin) | female | 44.0 | 0 | 0 | PC 17610 | 27.7208 | B4 | C |
195 | 196 | 1 | 1 | Lurette, Miss. Elise | female | 58.0 | 0 | 0 | PC 17569 | 146.5208 | B80 | C |
196 | 197 | 0 | 3 | Mernagh, Mr. Robert | male | NaN | 0 | 0 | 368703 | 7.75 | NaN | Q |
197 | 198 | 0 | 3 | Olsen, Mr. Karl Siegwart Andreas | male | 42.0 | 0 | 1 | 4579 | 8.4042 | NaN | S |
198 | 199 | 1 | 3 | Madigan, Miss. Margaret “Maggie” | female | NaN | 0 | 0 | 370370 | 7.75 | NaN | Q |
199 | 200 | 0 | 2 | Yrois, Miss. Henriette (“Mrs Harbeck”) | female | 24.0 | 0 | 0 | 248747 | 13.0 | NaN | S |
200 | 201 | 0 | 3 | Vande Walle, Mr. Nestor Cyriel | male | 28.0 | 0 | 0 | 345770 | 9.5 | NaN | S |
201 | 202 | 0 | 3 | Sage, Mr. Frederick | male | NaN | 8 | 2 | CA. 2343 | 69.55 | NaN | S |
202 | 203 | 0 | 3 | Johanson, Mr. Jakob Alfred | male | 34.0 | 0 | 0 | 3101264 | 6.4958 | NaN | S |
203 | 204 | 0 | 3 | Youseff, Mr. Gerious | male | 45.5 | 0 | 0 | 2628 | 7.225 | NaN | C |
204 | 205 | 1 | 3 | Cohen, Mr. Gurshon “Gus” | male | 18.0 | 0 | 0 | A/5 3540 | 8.05 | NaN | S |
205 | 206 | 0 | 3 | Strom, Miss. Telma Matilda | female | 2.0 | 0 | 1 | 347054 | 10.4625 | G6 | S |
206 | 207 | 0 | 3 | Backstrom, Mr. Karl Alfred | male | 32.0 | 1 | 0 | 3101278 | 15.85 | NaN | S |
207 | 208 | 1 | 3 | Albimona, Mr. Nassef Cassem | male | 26.0 | 0 | 0 | 2699 | 18.7875 | NaN | C |
208 | 209 | 1 | 3 | Carr, Miss. Helen “Ellen” | female | 16.0 | 0 | 0 | 367231 | 7.75 | NaN | Q |
209 | 210 | 1 | 1 | Blank, Mr. Henry | male | 40.0 | 0 | 0 | 112277 | 31.0 | A31 | C |
210 | 211 | 0 | 3 | Ali, Mr. Ahmed | male | 24.0 | 0 | 0 | SOTON/O.Q. 3101311 | 7.05 | NaN | S |
211 | 212 | 1 | 2 | Cameron, Miss. Clear Annie | female | 35.0 | 0 | 0 | F.C.C. 13528 | 21.0 | NaN | S |
212 | 213 | 0 | 3 | Perkin, Mr. John Henry | male | 22.0 | 0 | 0 | A/5 21174 | 7.25 | NaN | S |
213 | 214 | 0 | 2 | Givard, Mr. Hans Kristensen | male | 30.0 | 0 | 0 | 250646 | 13.0 | NaN | S |
214 | 215 | 0 | 3 | Kiernan, Mr. Philip | male | NaN | 1 | 0 | 367229 | 7.75 | NaN | Q |
215 | 216 | 1 | 1 | Newell, Miss. Madeleine | female | 31.0 | 1 | 0 | 35273 | 113.275 | D36 | C |
216 | 217 | 1 | 3 | Honkanen, Miss. Eliina | female | 27.0 | 0 | 0 | STON/O2. 3101283 | 7.925 | NaN | S |
217 | 218 | 0 | 2 | Jacobsohn, Mr. Sidney Samuel | male | 42.0 | 1 | 0 | 243847 | 27.0 | NaN | S |
218 | 219 | 1 | 1 | Bazzani, Miss. Albina | female | 32.0 | 0 | 0 | 11813 | 76.2917 | D15 | C |
219 | 220 | 0 | 2 | Harris, Mr. Walter | male | 30.0 | 0 | 0 | W/C 14208 | 10.5 | NaN | S |
220 | 221 | 1 | 3 | Sunderland, Mr. Victor Francis | male | 16.0 | 0 | 0 | SOTON/OQ 392089 | 8.05 | NaN | S |
221 | 222 | 0 | 2 | Bracken, Mr. James H | male | 27.0 | 0 | 0 | 220367 | 13.0 | NaN | S |
222 | 223 | 0 | 3 | Green, Mr. George Henry | male | 51.0 | 0 | 0 | 21440 | 8.05 | NaN | S |
223 | 224 | 0 | 3 | Nenkoff, Mr. Christo | male | NaN | 0 | 0 | 349234 | 7.8958 | NaN | S |
224 | 225 | 1 | 1 | Hoyt, Mr. Frederick Maxfield | male | 38.0 | 1 | 0 | 19943 | 90.0 | C93 | S |
225 | 226 | 0 | 3 | Berglund, Mr. Karl Ivar Sven | male | 22.0 | 0 | 0 | PP 4348 | 9.35 | NaN | S |
226 | 227 | 1 | 2 | Mellors, Mr. William John | male | 19.0 | 0 | 0 | SW/PP 751 | 10.5 | NaN | S |
227 | 228 | 0 | 3 | Lovell, Mr. John Hall (“Henry”) | male | 20.5 | 0 | 0 | A/5 21173 | 7.25 | NaN | S |
228 | 229 | 0 | 2 | Fahlstrom, Mr. Arne Jonas | male | 18.0 | 0 | 0 | 236171 | 13.0 | NaN | S |
229 | 230 | 0 | 3 | Lefebre, Miss. Mathilde | female | NaN | 3 | 1 | 4133 | 25.4667 | NaN | S |
230 | 231 | 1 | 1 | Harris, Mrs. Henry Birkhardt (Irene Wallach) | female | 35.0 | 1 | 0 | 36973 | 83.475 | C83 | S |
231 | 232 | 0 | 3 | Larsson, Mr. Bengt Edvin | male | 29.0 | 0 | 0 | 347067 | 7.775 | NaN | S |
232 | 233 | 0 | 2 | Sjostedt, Mr. Ernst Adolf | male | 59.0 | 0 | 0 | 237442 | 13.5 | NaN | S |
233 | 234 | 1 | 3 | Asplund, Miss. Lillian Gertrud | female | 5.0 | 4 | 2 | 347077 | 31.3875 | NaN | S |
234 | 235 | 0 | 2 | Leyson, Mr. Robert William Norman | male | 24.0 | 0 | 0 | C.A. 29566 | 10.5 | NaN | S |
235 | 236 | 0 | 3 | Harknett, Miss. Alice Phoebe | female | NaN | 0 | 0 | W./C. 6609 | 7.55 | NaN | S |
236 | 237 | 0 | 2 | Hold, Mr. Stephen | male | 44.0 | 1 | 0 | 26707 | 26.0 | NaN | S |
237 | 238 | 1 | 2 | Collyer, Miss. Marjorie “Lottie” | female | 8.0 | 0 | 2 | C.A. 31921 | 26.25 | NaN | S |
238 | 239 | 0 | 2 | Pengelly, Mr. Frederick William | male | 19.0 | 0 | 0 | 28665 | 10.5 | NaN | S |
239 | 240 | 0 | 2 | Hunt, Mr. George Henry | male | 33.0 | 0 | 0 | SCO/W 1585 | 12.275 | NaN | S |
240 | 241 | 0 | 3 | Zabour, Miss. Thamine | female | NaN | 1 | 0 | 2665 | 14.4542 | NaN | C |
241 | 242 | 1 | 3 | Murphy, Miss. Katherine “Kate” | female | NaN | 1 | 0 | 367230 | 15.5 | NaN | Q |
242 | 243 | 0 | 2 | Coleridge, Mr. Reginald Charles | male | 29.0 | 0 | 0 | W./C. 14263 | 10.5 | NaN | S |
243 | 244 | 0 | 3 | Maenpaa, Mr. Matti Alexanteri | male | 22.0 | 0 | 0 | STON/O 2. 3101275 | 7.125 | NaN | S |
244 | 245 | 0 | 3 | Attalah, Mr. Sleiman | male | 30.0 | 0 | 0 | 2694 | 7.225 | NaN | C |
245 | 246 | 0 | 1 | Minahan, Dr. William Edward | male | 44.0 | 2 | 0 | 19928 | 90.0 | C78 | Q |
246 | 247 | 0 | 3 | Lindahl, Miss. Agda Thorilda Viktoria | female | 25.0 | 0 | 0 | 347071 | 7.775 | NaN | S |
247 | 248 | 1 | 2 | Hamalainen, Mrs. William (Anna) | female | 24.0 | 0 | 2 | 250649 | 14.5 | NaN | S |
248 | 249 | 1 | 1 | Beckwith, Mr. Richard Leonard | male | 37.0 | 1 | 1 | 11751 | 52.5542 | D35 | S |
249 | 250 | 0 | 2 | Carter, Rev. Ernest Courtenay | male | 54.0 | 1 | 0 | 244252 | 26.0 | NaN | S |
250 | 251 | 0 | 3 | Reed, Mr. James George | male | NaN | 0 | 0 | 362316 | 7.25 | NaN | S |
251 | 252 | 0 | 3 | Strom, Mrs. Wilhelm (Elna Matilda Persson) | female | 29.0 | 1 | 1 | 347054 | 10.4625 | G6 | S |
252 | 253 | 0 | 1 | Stead, Mr. William Thomas | male | 62.0 | 0 | 0 | 113514 | 26.55 | C87 | S |
253 | 254 | 0 | 3 | Lobb, Mr. William Arthur | male | 30.0 | 1 | 0 | A/5. 3336 | 16.1 | NaN | S |
254 | 255 | 0 | 3 | Rosblom, Mrs. Viktor (Helena Wilhelmina) | female | 41.0 | 0 | 2 | 370129 | 20.2125 | NaN | S |
255 | 256 | 1 | 3 | Touma, Mrs. Darwis (Hanne Youssef Razi) | female | 29.0 | 0 | 2 | 2650 | 15.2458 | NaN | C |
256 | 257 | 1 | 1 | Thorne, Mrs. Gertrude Maybelle | female | NaN | 0 | 0 | PC 17585 | 79.2 | NaN | C |
257 | 258 | 1 | 1 | Cherry, Miss. Gladys | female | 30.0 | 0 | 0 | 110152 | 86.5 | B77 | S |
258 | 259 | 1 | 1 | Ward, Miss. Anna | female | 35.0 | 0 | 0 | PC 17755 | 512.3292 | NaN | C |
259 | 260 | 1 | 2 | Parrish, Mrs. (Lutie Davis) | female | 50.0 | 0 | 1 | 230433 | 26.0 | NaN | S |
260 | 261 | 0 | 3 | Smith, Mr. Thomas | male | NaN | 0 | 0 | 384461 | 7.75 | NaN | Q |
261 | 262 | 1 | 3 | Asplund, Master. Edvin Rojj Felix | male | 3.0 | 4 | 2 | 347077 | 31.3875 | NaN | S |
262 | 263 | 0 | 1 | Taussig, Mr. Emil | male | 52.0 | 1 | 1 | 110413 | 79.65 | E67 | S |
263 | 264 | 0 | 1 | Harrison, Mr. William | male | 40.0 | 0 | 0 | 112059 | 0.0 | B94 | S |
264 | 265 | 0 | 3 | Henry, Miss. Delia | female | NaN | 0 | 0 | 382649 | 7.75 | NaN | Q |
265 | 266 | 0 | 2 | Reeves, Mr. David | male | 36.0 | 0 | 0 | C.A. 17248 | 10.5 | NaN | S |
266 | 267 | 0 | 3 | Panula, Mr. Ernesti Arvid | male | 16.0 | 4 | 1 | 3101295 | 39.6875 | NaN | S |
267 | 268 | 1 | 3 | Persson, Mr. Ernst Ulrik | male | 25.0 | 1 | 0 | 347083 | 7.775 | NaN | S |
268 | 269 | 1 | 1 | Graham, Mrs. William Thompson (Edith Junkins) | female | 58.0 | 0 | 1 | PC 17582 | 153.4625 | C125 | S |
269 | 270 | 1 | 1 | Bissette, Miss. Amelia | female | 35.0 | 0 | 0 | PC 17760 | 135.6333 | C99 | S |
270 | 271 | 0 | 1 | Cairns, Mr. Alexander | male | NaN | 0 | 0 | 113798 | 31.0 | NaN | S |
271 | 272 | 1 | 3 | Tornquist, Mr. William Henry | male | 25.0 | 0 | 0 | LINE | 0.0 | NaN | S |
272 | 273 | 1 | 2 | Mellinger, Mrs. (Elizabeth Anne Maidment) | female | 41.0 | 0 | 1 | 250644 | 19.5 | NaN | S |
273 | 274 | 0 | 1 | Natsch, Mr. Charles H | male | 37.0 | 0 | 1 | PC 17596 | 29.7 | C118 | C |
274 | 275 | 1 | 3 | Healy, Miss. Hanora “Nora” | female | NaN | 0 | 0 | 370375 | 7.75 | NaN | Q |
275 | 276 | 1 | 1 | Andrews, Miss. Kornelia Theodosia | female | 63.0 | 1 | 0 | 13502 | 77.9583 | D7 | S |
276 | 277 | 0 | 3 | Lindblom, Miss. Augusta Charlotta | female | 45.0 | 0 | 0 | 347073 | 7.75 | NaN | S |
277 | 278 | 0 | 2 | Parkes, Mr. Francis “Frank” | male | NaN | 0 | 0 | 239853 | 0.0 | NaN | S |
278 | 279 | 0 | 3 | Rice, Master. Eric | male | 7.0 | 4 | 1 | 382652 | 29.125 | NaN | Q |
279 | 280 | 1 | 3 | Abbott, Mrs. Stanton (Rosa Hunt) | female | 35.0 | 1 | 1 | C.A. 2673 | 20.25 | NaN | S |
280 | 281 | 0 | 3 | Duane, Mr. Frank | male | 65.0 | 0 | 0 | 336439 | 7.75 | NaN | Q |
281 | 282 | 0 | 3 | Olsson, Mr. Nils Johan Goransson | male | 28.0 | 0 | 0 | 347464 | 7.8542 | NaN | S |
282 | 283 | 0 | 3 | de Pelsmaeker, Mr. Alfons | male | 16.0 | 0 | 0 | 345778 | 9.5 | NaN | S |
283 | 284 | 1 | 3 | Dorking, Mr. Edward Arthur | male | 19.0 | 0 | 0 | A/5. 10482 | 8.05 | NaN | S |
284 | 285 | 0 | 1 | Smith, Mr. Richard William | male | NaN | 0 | 0 | 113056 | 26.0 | A19 | S |
285 | 286 | 0 | 3 | Stankovic, Mr. Ivan | male | 33.0 | 0 | 0 | 349239 | 8.6625 | NaN | C |
286 | 287 | 1 | 3 | de Mulder, Mr. Theodore | male | 30.0 | 0 | 0 | 345774 | 9.5 | NaN | S |
287 | 288 | 0 | 3 | Naidenoff, Mr. Penko | male | 22.0 | 0 | 0 | 349206 | 7.8958 | NaN | S |
288 | 289 | 1 | 2 | Hosono, Mr. Masabumi | male | 42.0 | 0 | 0 | 237798 | 13.0 | NaN | S |
289 | 290 | 1 | 3 | Connolly, Miss. Kate | female | 22.0 | 0 | 0 | 370373 | 7.75 | NaN | Q |
290 | 291 | 1 | 1 | Barber, Miss. Ellen “Nellie” | female | 26.0 | 0 | 0 | 19877 | 78.85 | NaN | S |
291 | 292 | 1 | 1 | Bishop, Mrs. Dickinson H (Helen Walton) | female | 19.0 | 1 | 0 | 11967 | 91.0792 | B49 | C |
292 | 293 | 0 | 2 | Levy, Mr. Rene Jacques | male | 36.0 | 0 | 0 | SC/Paris 2163 | 12.875 | D | C |
293 | 294 | 0 | 3 | Haas, Miss. Aloisia | female | 24.0 | 0 | 0 | 349236 | 8.85 | NaN | S |
294 | 295 | 0 | 3 | Mineff, Mr. Ivan | male | 24.0 | 0 | 0 | 349233 | 7.8958 | NaN | S |
295 | 296 | 0 | 1 | Lewy, Mr. Ervin G | male | NaN | 0 | 0 | PC 17612 | 27.7208 | NaN | C |
296 | 297 | 0 | 3 | Hanna, Mr. Mansour | male | 23.5 | 0 | 0 | 2693 | 7.2292 | NaN | C |
297 | 298 | 0 | 1 | Allison, Miss. Helen Loraine | female | 2.0 | 1 | 2 | 113781 | 151.55 | C22 C26 | S |
298 | 299 | 1 | 1 | Saalfeld, Mr. Adolphe | male | NaN | 0 | 0 | 19988 | 30.5 | C106 | S |
299 | 300 | 1 | 1 | Baxter, Mrs. James (Helene DeLaudeniere Chaput) | female | 50.0 | 0 | 1 | PC 17558 | 247.5208 | B58 B60 | C |
300 | 301 | 1 | 3 | Kelly, Miss. Anna Katherine “Annie Kate” | female | NaN | 0 | 0 | 9234 | 7.75 | NaN | Q |
301 | 302 | 1 | 3 | McCoy, Mr. Bernard | male | NaN | 2 | 0 | 367226 | 23.25 | NaN | Q |
302 | 303 | 0 | 3 | Johnson, Mr. William Cahoone Jr | male | 19.0 | 0 | 0 | LINE | 0.0 | NaN | S |
303 | 304 | 1 | 2 | Keane, Miss. Nora A | female | NaN | 0 | 0 | 226593 | 12.35 | E101 | Q |
304 | 305 | 0 | 3 | Williams, Mr. Howard Hugh “Harry” | male | NaN | 0 | 0 | A/5 2466 | 8.05 | NaN | S |
305 | 306 | 1 | 1 | Allison, Master. Hudson Trevor | male | 0.92 | 1 | 2 | 113781 | 151.55 | C22 C26 | S |
306 | 307 | 1 | 1 | Fleming, Miss. Margaret | female | NaN | 0 | 0 | 17421 | 110.8833 | NaN | C |
307 | 308 | 1 | 1 | Penasco y Castellana, Mrs. Victor de Satode (Maria Josefa Perez de Soto y Vallejo) | female | 17.0 | 1 | 0 | PC 17758 | 108.9 | C65 | C |
308 | 309 | 0 | 2 | Abelson, Mr. Samuel | male | 30.0 | 1 | 0 | P/PP 3381 | 24.0 | NaN | C |
309 | 310 | 1 | 1 | Francatelli, Miss. Laura Mabel | female | 30.0 | 0 | 0 | PC 17485 | 56.9292 | E36 | C |
310 | 311 | 1 | 1 | Hays, Miss. Margaret Bechstein | female | 24.0 | 0 | 0 | 11767 | 83.1583 | C54 | C |
311 | 312 | 1 | 1 | Ryerson, Miss. Emily Borie | female | 18.0 | 2 | 2 | PC 17608 | 262.375 | B57 B59 B63 B66 | C |
312 | 313 | 0 | 2 | Lahtinen, Mrs. William (Anna Sylfven) | female | 26.0 | 1 | 1 | 250651 | 26.0 | NaN | S |
313 | 314 | 0 | 3 | Hendekovic, Mr. Ignjac | male | 28.0 | 0 | 0 | 349243 | 7.8958 | NaN | S |
314 | 315 | 0 | 2 | Hart, Mr. Benjamin | male | 43.0 | 1 | 1 | F.C.C. 13529 | 26.25 | NaN | S |
315 | 316 | 1 | 3 | Nilsson, Miss. Helmina Josefina | female | 26.0 | 0 | 0 | 347470 | 7.8542 | NaN | S |
316 | 317 | 1 | 2 | Kantor, Mrs. Sinai (Miriam Sternin) | female | 24.0 | 1 | 0 | 244367 | 26.0 | NaN | S |
317 | 318 | 0 | 2 | Moraweck, Dr. Ernest | male | 54.0 | 0 | 0 | 29011 | 14.0 | NaN | S |
318 | 319 | 1 | 1 | Wick, Miss. Mary Natalie | female | 31.0 | 0 | 2 | 36928 | 164.8667 | C7 | S |
319 | 320 | 1 | 1 | Spedden, Mrs. Frederic Oakley (Margaretta Corning Stone) | female | 40.0 | 1 | 1 | 16966 | 134.5 | E34 | C |
320 | 321 | 0 | 3 | Dennis, Mr. Samuel | male | 22.0 | 0 | 0 | A/5 21172 | 7.25 | NaN | S |
321 | 322 | 0 | 3 | Danoff, Mr. Yoto | male | 27.0 | 0 | 0 | 349219 | 7.8958 | NaN | S |
322 | 323 | 1 | 2 | Slayter, Miss. Hilda Mary | female | 30.0 | 0 | 0 | 234818 | 12.35 | NaN | Q |
323 | 324 | 1 | 2 | Caldwell, Mrs. Albert Francis (Sylvia Mae Harbaugh) | female | 22.0 | 1 | 1 | 248738 | 29.0 | NaN | S |
324 | 325 | 0 | 3 | Sage, Mr. George John Jr | male | NaN | 8 | 2 | CA. 2343 | 69.55 | NaN | S |
325 | 326 | 1 | 1 | Young, Miss. Marie Grice | female | 36.0 | 0 | 0 | PC 17760 | 135.6333 | C32 | C |
326 | 327 | 0 | 3 | Nysveen, Mr. Johan Hansen | male | 61.0 | 0 | 0 | 345364 | 6.2375 | NaN | S |
327 | 328 | 1 | 2 | Ball, Mrs. (Ada E Hall) | female | 36.0 | 0 | 0 | 28551 | 13.0 | D | S |
328 | 329 | 1 | 3 | Goldsmith, Mrs. Frank John (Emily Alice Brown) | female | 31.0 | 1 | 1 | 363291 | 20.525 | NaN | S |
329 | 330 | 1 | 1 | Hippach, Miss. Jean Gertrude | female | 16.0 | 0 | 1 | 111361 | 57.9792 | B18 | C |
330 | 331 | 1 | 3 | McCoy, Miss. Agnes | female | NaN | 2 | 0 | 367226 | 23.25 | NaN | Q |
331 | 332 | 0 | 1 | Partner, Mr. Austen | male | 45.5 | 0 | 0 | 113043 | 28.5 | C124 | S |
332 | 333 | 0 | 1 | Graham, Mr. George Edward | male | 38.0 | 0 | 1 | PC 17582 | 153.4625 | C91 | S |
333 | 334 | 0 | 3 | Vander Planke, Mr. Leo Edmondus | male | 16.0 | 2 | 0 | 345764 | 18.0 | NaN | S |
334 | 335 | 1 | 1 | Frauenthal, Mrs. Henry William (Clara Heinsheimer) | female | NaN | 1 | 0 | PC 17611 | 133.65 | NaN | S |
335 | 336 | 0 | 3 | Denkoff, Mr. Mitto | male | NaN | 0 | 0 | 349225 | 7.8958 | NaN | S |
336 | 337 | 0 | 1 | Pears, Mr. Thomas Clinton | male | 29.0 | 1 | 0 | 113776 | 66.6 | C2 | S |
337 | 338 | 1 | 1 | Burns, Miss. Elizabeth Margaret | female | 41.0 | 0 | 0 | 16966 | 134.5 | E40 | C |
338 | 339 | 1 | 3 | Dahl, Mr. Karl Edwart | male | 45.0 | 0 | 0 | 7598 | 8.05 | NaN | S |
339 | 340 | 0 | 1 | Blackwell, Mr. Stephen Weart | male | 45.0 | 0 | 0 | 113784 | 35.5 | T | S |
340 | 341 | 1 | 2 | Navratil, Master. Edmond Roger | male | 2.0 | 1 | 1 | 230080 | 26.0 | F2 | S |
341 | 342 | 1 | 1 | Fortune, Miss. Alice Elizabeth | female | 24.0 | 3 | 2 | 19950 | 263.0 | C23 C25 C27 | S |
342 | 343 | 0 | 2 | Collander, Mr. Erik Gustaf | male | 28.0 | 0 | 0 | 248740 | 13.0 | NaN | S |
343 | 344 | 0 | 2 | Sedgwick, Mr. Charles Frederick Waddington | male | 25.0 | 0 | 0 | 244361 | 13.0 | NaN | S |
344 | 345 | 0 | 2 | Fox, Mr. Stanley Hubert | male | 36.0 | 0 | 0 | 229236 | 13.0 | NaN | S |
345 | 346 | 1 | 2 | Brown, Miss. Amelia “Mildred” | female | 24.0 | 0 | 0 | 248733 | 13.0 | F33 | S |
346 | 347 | 1 | 2 | Smith, Miss. Marion Elsie | female | 40.0 | 0 | 0 | 31418 | 13.0 | NaN | S |
347 | 348 | 1 | 3 | Davison, Mrs. Thomas Henry (Mary E Finck) | female | NaN | 1 | 0 | 386525 | 16.1 | NaN | S |
348 | 349 | 1 | 3 | Coutts, Master. William Loch “William” | male | 3.0 | 1 | 1 | C.A. 37671 | 15.9 | NaN | S |
349 | 350 | 0 | 3 | Dimic, Mr. Jovan | male | 42.0 | 0 | 0 | 315088 | 8.6625 | NaN | S |
350 | 351 | 0 | 3 | Odahl, Mr. Nils Martin | male | 23.0 | 0 | 0 | 7267 | 9.225 | NaN | S |
351 | 352 | 0 | 1 | Williams-Lambert, Mr. Fletcher Fellows | male | NaN | 0 | 0 | 113510 | 35.0 | C128 | S |
352 | 353 | 0 | 3 | Elias, Mr. Tannous | male | 15.0 | 1 | 1 | 2695 | 7.2292 | NaN | C |
353 | 354 | 0 | 3 | Arnold-Franchi, Mr. Josef | male | 25.0 | 1 | 0 | 349237 | 17.8 | NaN | S |
354 | 355 | 0 | 3 | Yousif, Mr. Wazli | male | NaN | 0 | 0 | 2647 | 7.225 | NaN | C |
355 | 356 | 0 | 3 | Vanden Steen, Mr. Leo Peter | male | 28.0 | 0 | 0 | 345783 | 9.5 | NaN | S |
356 | 357 | 1 | 1 | Bowerman, Miss. Elsie Edith | female | 22.0 | 0 | 1 | 113505 | 55.0 | E33 | S |
357 | 358 | 0 | 2 | Funk, Miss. Annie Clemmer | female | 38.0 | 0 | 0 | 237671 | 13.0 | NaN | S |
358 | 359 | 1 | 3 | McGovern, Miss. Mary | female | NaN | 0 | 0 | 330931 | 7.8792 | NaN | Q |
359 | 360 | 1 | 3 | Mockler, Miss. Helen Mary “Ellie” | female | NaN | 0 | 0 | 330980 | 7.8792 | NaN | Q |
360 | 361 | 0 | 3 | Skoog, Mr. Wilhelm | male | 40.0 | 1 | 4 | 347088 | 27.9 | NaN | S |
361 | 362 | 0 | 2 | del Carlo, Mr. Sebastiano | male | 29.0 | 1 | 0 | SC/PARIS 2167 | 27.7208 | NaN | C |
362 | 363 | 0 | 3 | Barbara, Mrs. (Catherine David) | female | 45.0 | 0 | 1 | 2691 | 14.4542 | NaN | C |
363 | 364 | 0 | 3 | Asim, Mr. Adola | male | 35.0 | 0 | 0 | SOTON/O.Q. 3101310 | 7.05 | NaN | S |
364 | 365 | 0 | 3 | O’Brien, Mr. Thomas | male | NaN | 1 | 0 | 370365 | 15.5 | NaN | Q |
365 | 366 | 0 | 3 | Adahl, Mr. Mauritz Nils Martin | male | 30.0 | 0 | 0 | C 7076 | 7.25 | NaN | S |
366 | 367 | 1 | 1 | Warren, Mrs. Frank Manley (Anna Sophia Atkinson) | female | 60.0 | 1 | 0 | 110813 | 75.25 | D37 | C |
367 | 368 | 1 | 3 | Moussa, Mrs. (Mantoura Boulos) | female | NaN | 0 | 0 | 2626 | 7.2292 | NaN | C |
368 | 369 | 1 | 3 | Jermyn, Miss. Annie | female | NaN | 0 | 0 | 14313 | 7.75 | NaN | Q |
369 | 370 | 1 | 1 | Aubart, Mme. Leontine Pauline | female | 24.0 | 0 | 0 | PC 17477 | 69.3 | B35 | C |
370 | 371 | 1 | 1 | Harder, Mr. George Achilles | male | 25.0 | 1 | 0 | 11765 | 55.4417 | E50 | C |
371 | 372 | 0 | 3 | Wiklund, Mr. Jakob Alfred | male | 18.0 | 1 | 0 | 3101267 | 6.4958 | NaN | S |
372 | 373 | 0 | 3 | Beavan, Mr. William Thomas | male | 19.0 | 0 | 0 | 323951 | 8.05 | NaN | S |
373 | 374 | 0 | 1 | Ringhini, Mr. Sante | male | 22.0 | 0 | 0 | PC 17760 | 135.6333 | NaN | C |
374 | 375 | 0 | 3 | Palsson, Miss. Stina Viola | female | 3.0 | 3 | 1 | 349909 | 21.075 | NaN | S |
375 | 376 | 1 | 1 | Meyer, Mrs. Edgar Joseph (Leila Saks) | female | NaN | 1 | 0 | PC 17604 | 82.1708 | NaN | C |
376 | 377 | 1 | 3 | Landergren, Miss. Aurora Adelia | female | 22.0 | 0 | 0 | C 7077 | 7.25 | NaN | S |
377 | 378 | 0 | 1 | Widener, Mr. Harry Elkins | male | 27.0 | 0 | 2 | 113503 | 211.5 | C82 | C |
378 | 379 | 0 | 3 | Betros, Mr. Tannous | male | 20.0 | 0 | 0 | 2648 | 4.0125 | NaN | C |
379 | 380 | 0 | 3 | Gustafsson, Mr. Karl Gideon | male | 19.0 | 0 | 0 | 347069 | 7.775 | NaN | S |
380 | 381 | 1 | 1 | Bidois, Miss. Rosalie | female | 42.0 | 0 | 0 | PC 17757 | 227.525 | NaN | C |
381 | 382 | 1 | 3 | Nakid, Miss. Maria (“Mary”) | female | 1.0 | 0 | 2 | 2653 | 15.7417 | NaN | C |
382 | 383 | 0 | 3 | Tikkanen, Mr. Juho | male | 32.0 | 0 | 0 | STON/O 2. 3101293 | 7.925 | NaN | S |
383 | 384 | 1 | 1 | Holverson, Mrs. Alexander Oskar (Mary Aline Towner) | female | 35.0 | 1 | 0 | 113789 | 52.0 | NaN | S |
384 | 385 | 0 | 3 | Plotcharsky, Mr. Vasil | male | NaN | 0 | 0 | 349227 | 7.8958 | NaN | S |
385 | 386 | 0 | 2 | Davies, Mr. Charles Henry | male | 18.0 | 0 | 0 | S.O.C. 14879 | 73.5 | NaN | S |
386 | 387 | 0 | 3 | Goodwin, Master. Sidney Leonard | male | 1.0 | 5 | 2 | CA 2144 | 46.9 | NaN | S |
387 | 388 | 1 | 2 | Buss, Miss. Kate | female | 36.0 | 0 | 0 | 27849 | 13.0 | NaN | S |
388 | 389 | 0 | 3 | Sadlier, Mr. Matthew | male | NaN | 0 | 0 | 367655 | 7.7292 | NaN | Q |
389 | 390 | 1 | 2 | Lehmann, Miss. Bertha | female | 17.0 | 0 | 0 | SC 1748 | 12.0 | NaN | C |
390 | 391 | 1 | 1 | Carter, Mr. William Ernest | male | 36.0 | 1 | 2 | 113760 | 120.0 | B96 B98 | S |
391 | 392 | 1 | 3 | Jansson, Mr. Carl Olof | male | 21.0 | 0 | 0 | 350034 | 7.7958 | NaN | S |
392 | 393 | 0 | 3 | Gustafsson, Mr. Johan Birger | male | 28.0 | 2 | 0 | 3101277 | 7.925 | NaN | S |
393 | 394 | 1 | 1 | Newell, Miss. Marjorie | female | 23.0 | 1 | 0 | 35273 | 113.275 | D36 | C |
394 | 395 | 1 | 3 | Sandstrom, Mrs. Hjalmar (Agnes Charlotta Bengtsson) | female | 24.0 | 0 | 2 | PP 9549 | 16.7 | G6 | S |
395 | 396 | 0 | 3 | Johansson, Mr. Erik | male | 22.0 | 0 | 0 | 350052 | 7.7958 | NaN | S |
396 | 397 | 0 | 3 | Olsson, Miss. Elina | female | 31.0 | 0 | 0 | 350407 | 7.8542 | NaN | S |
397 | 398 | 0 | 2 | McKane, Mr. Peter David | male | 46.0 | 0 | 0 | 28403 | 26.0 | NaN | S |
398 | 399 | 0 | 2 | Pain, Dr. Alfred | male | 23.0 | 0 | 0 | 244278 | 10.5 | NaN | S |
399 | 400 | 1 | 2 | Trout, Mrs. William H (Jessie L) | female | 28.0 | 0 | 0 | 240929 | 12.65 | NaN | S |
400 | 401 | 1 | 3 | Niskanen, Mr. Juha | male | 39.0 | 0 | 0 | STON/O 2. 3101289 | 7.925 | NaN | S |
401 | 402 | 0 | 3 | Adams, Mr. John | male | 26.0 | 0 | 0 | 341826 | 8.05 | NaN | S |
402 | 403 | 0 | 3 | Jussila, Miss. Mari Aina | female | 21.0 | 1 | 0 | 4137 | 9.825 | NaN | S |
403 | 404 | 0 | 3 | Hakkarainen, Mr. Pekka Pietari | male | 28.0 | 1 | 0 | STON/O2. 3101279 | 15.85 | NaN | S |
404 | 405 | 0 | 3 | Oreskovic, Miss. Marija | female | 20.0 | 0 | 0 | 315096 | 8.6625 | NaN | S |
405 | 406 | 0 | 2 | Gale, Mr. Shadrach | male | 34.0 | 1 | 0 | 28664 | 21.0 | NaN | S |
406 | 407 | 0 | 3 | Widegren, Mr. Carl/Charles Peter | male | 51.0 | 0 | 0 | 347064 | 7.75 | NaN | S |
407 | 408 | 1 | 2 | Richards, Master. William Rowe | male | 3.0 | 1 | 1 | 29106 | 18.75 | NaN | S |
408 | 409 | 0 | 3 | Birkeland, Mr. Hans Martin Monsen | male | 21.0 | 0 | 0 | 312992 | 7.775 | NaN | S |
409 | 410 | 0 | 3 | Lefebre, Miss. Ida | female | NaN | 3 | 1 | 4133 | 25.4667 | NaN | S |
410 | 411 | 0 | 3 | Sdycoff, Mr. Todor | male | NaN | 0 | 0 | 349222 | 7.8958 | NaN | S |
411 | 412 | 0 | 3 | Hart, Mr. Henry | male | NaN | 0 | 0 | 394140 | 6.8583 | NaN | Q |
412 | 413 | 1 | 1 | Minahan, Miss. Daisy E | female | 33.0 | 1 | 0 | 19928 | 90.0 | C78 | Q |
413 | 414 | 0 | 2 | Cunningham, Mr. Alfred Fleming | male | NaN | 0 | 0 | 239853 | 0.0 | NaN | S |
414 | 415 | 1 | 3 | Sundman, Mr. Johan Julian | male | 44.0 | 0 | 0 | STON/O 2. 3101269 | 7.925 | NaN | S |
415 | 416 | 0 | 3 | Meek, Mrs. Thomas (Annie Louise Rowley) | female | NaN | 0 | 0 | 343095 | 8.05 | NaN | S |
416 | 417 | 1 | 2 | Drew, Mrs. James Vivian (Lulu Thorne Christian) | female | 34.0 | 1 | 1 | 28220 | 32.5 | NaN | S |
417 | 418 | 1 | 2 | Silven, Miss. Lyyli Karoliina | female | 18.0 | 0 | 2 | 250652 | 13.0 | NaN | S |
418 | 419 | 0 | 2 | Matthews, Mr. William John | male | 30.0 | 0 | 0 | 28228 | 13.0 | NaN | S |
419 | 420 | 0 | 3 | Van Impe, Miss. Catharina | female | 10.0 | 0 | 2 | 345773 | 24.15 | NaN | S |
420 | 421 | 0 | 3 | Gheorgheff, Mr. Stanio | male | NaN | 0 | 0 | 349254 | 7.8958 | NaN | C |
421 | 422 | 0 | 3 | Charters, Mr. David | male | 21.0 | 0 | 0 | A/5. 13032 | 7.7333 | NaN | Q |
422 | 423 | 0 | 3 | Zimmerman, Mr. Leo | male | 29.0 | 0 | 0 | 315082 | 7.875 | NaN | S |
423 | 424 | 0 | 3 | Danbom, Mrs. Ernst Gilbert (Anna Sigrid Maria Brogren) | female | 28.0 | 1 | 1 | 347080 | 14.4 | NaN | S |
424 | 425 | 0 | 3 | Rosblom, Mr. Viktor Richard | male | 18.0 | 1 | 1 | 370129 | 20.2125 | NaN | S |
425 | 426 | 0 | 3 | Wiseman, Mr. Phillippe | male | NaN | 0 | 0 | A/4. 34244 | 7.25 | NaN | S |
426 | 427 | 1 | 2 | Clarke, Mrs. Charles V (Ada Maria Winfield) | female | 28.0 | 1 | 0 | 2003 | 26.0 | NaN | S |
427 | 428 | 1 | 2 | Phillips, Miss. Kate Florence (“Mrs Kate Louise Phillips Marshall”) | female | 19.0 | 0 | 0 | 250655 | 26.0 | NaN | S |
428 | 429 | 0 | 3 | Flynn, Mr. James | male | NaN | 0 | 0 | 364851 | 7.75 | NaN | Q |
429 | 430 | 1 | 3 | Pickard, Mr. Berk (Berk Trembisky) | male | 32.0 | 0 | 0 | SOTON/O.Q. 392078 | 8.05 | E10 | S |
430 | 431 | 1 | 1 | Bjornstrom-Steffansson, Mr. Mauritz Hakan | male | 28.0 | 0 | 0 | 110564 | 26.55 | C52 | S |
431 | 432 | 1 | 3 | Thorneycroft, Mrs. Percival (Florence Kate White) | female | NaN | 1 | 0 | 376564 | 16.1 | NaN | S |
432 | 433 | 1 | 2 | Louch, Mrs. Charles Alexander (Alice Adelaide Slow) | female | 42.0 | 1 | 0 | SC/AH 3085 | 26.0 | NaN | S |
433 | 434 | 0 | 3 | Kallio, Mr. Nikolai Erland | male | 17.0 | 0 | 0 | STON/O 2. 3101274 | 7.125 | NaN | S |
434 | 435 | 0 | 1 | Silvey, Mr. William Baird | male | 50.0 | 1 | 0 | 13507 | 55.9 | E44 | S |
435 | 436 | 1 | 1 | Carter, Miss. Lucile Polk | female | 14.0 | 1 | 2 | 113760 | 120.0 | B96 B98 | S |
436 | 437 | 0 | 3 | Ford, Miss. Doolina Margaret “Daisy” | female | 21.0 | 2 | 2 | W./C. 6608 | 34.375 | NaN | S |
437 | 438 | 1 | 2 | Richards, Mrs. Sidney (Emily Hocking) | female | 24.0 | 2 | 3 | 29106 | 18.75 | NaN | S |
438 | 439 | 0 | 1 | Fortune, Mr. Mark | male | 64.0 | 1 | 4 | 19950 | 263.0 | C23 C25 C27 | S |
439 | 440 | 0 | 2 | Kvillner, Mr. Johan Henrik Johannesson | male | 31.0 | 0 | 0 | C.A. 18723 | 10.5 | NaN | S |
440 | 441 | 1 | 2 | Hart, Mrs. Benjamin (Esther Ada Bloomfield) | female | 45.0 | 1 | 1 | F.C.C. 13529 | 26.25 | NaN | S |
441 | 442 | 0 | 3 | Hampe, Mr. Leon | male | 20.0 | 0 | 0 | 345769 | 9.5 | NaN | S |
442 | 443 | 0 | 3 | Petterson, Mr. Johan Emil | male | 25.0 | 1 | 0 | 347076 | 7.775 | NaN | S |
443 | 444 | 1 | 2 | Reynaldo, Ms. Encarnacion | female | 28.0 | 0 | 0 | 230434 | 13.0 | NaN | S |
444 | 445 | 1 | 3 | Johannesen-Bratthammer, Mr. Bernt | male | NaN | 0 | 0 | 65306 | 8.1125 | NaN | S |
445 | 446 | 1 | 1 | Dodge, Master. Washington | male | 4.0 | 0 | 2 | 33638 | 81.8583 | A34 | S |
446 | 447 | 1 | 2 | Mellinger, Miss. Madeleine Violet | female | 13.0 | 0 | 1 | 250644 | 19.5 | NaN | S |
447 | 448 | 1 | 1 | Seward, Mr. Frederic Kimber | male | 34.0 | 0 | 0 | 113794 | 26.55 | NaN | S |
448 | 449 | 1 | 3 | Baclini, Miss. Marie Catherine | female | 5.0 | 2 | 1 | 2666 | 19.2583 | NaN | C |
449 | 450 | 1 | 1 | Peuchen, Major. Arthur Godfrey | male | 52.0 | 0 | 0 | 113786 | 30.5 | C104 | S |
450 | 451 | 0 | 2 | West, Mr. Edwy Arthur | male | 36.0 | 1 | 2 | C.A. 34651 | 27.75 | NaN | S |
451 | 452 | 0 | 3 | Hagland, Mr. Ingvald Olai Olsen | male | NaN | 1 | 0 | 65303 | 19.9667 | NaN | S |
452 | 453 | 0 | 1 | Foreman, Mr. Benjamin Laventall | male | 30.0 | 0 | 0 | 113051 | 27.75 | C111 | C |
453 | 454 | 1 | 1 | Goldenberg, Mr. Samuel L | male | 49.0 | 1 | 0 | 17453 | 89.1042 | C92 | C |
454 | 455 | 0 | 3 | Peduzzi, Mr. Joseph | male | NaN | 0 | 0 | A/5 2817 | 8.05 | NaN | S |
455 | 456 | 1 | 3 | Jalsevac, Mr. Ivan | male | 29.0 | 0 | 0 | 349240 | 7.8958 | NaN | C |
456 | 457 | 0 | 1 | Millet, Mr. Francis Davis | male | 65.0 | 0 | 0 | 13509 | 26.55 | E38 | S |
457 | 458 | 1 | 1 | Kenyon, Mrs. Frederick R (Marion) | female | NaN | 1 | 0 | 17464 | 51.8625 | D21 | S |
458 | 459 | 1 | 2 | Toomey, Miss. Ellen | female | 50.0 | 0 | 0 | F.C.C. 13531 | 10.5 | NaN | S |
459 | 460 | 0 | 3 | O’Connor, Mr. Maurice | male | NaN | 0 | 0 | 371060 | 7.75 | NaN | Q |
460 | 461 | 1 | 1 | Anderson, Mr. Harry | male | 48.0 | 0 | 0 | 19952 | 26.55 | E12 | S |
461 | 462 | 0 | 3 | Morley, Mr. William | male | 34.0 | 0 | 0 | 364506 | 8.05 | NaN | S |
462 | 463 | 0 | 1 | Gee, Mr. Arthur H | male | 47.0 | 0 | 0 | 111320 | 38.5 | E63 | S |
463 | 464 | 0 | 2 | Milling, Mr. Jacob Christian | male | 48.0 | 0 | 0 | 234360 | 13.0 | NaN | S |
464 | 465 | 0 | 3 | Maisner, Mr. Simon | male | NaN | 0 | 0 | A/S 2816 | 8.05 | NaN | S |
465 | 466 | 0 | 3 | Goncalves, Mr. Manuel Estanslas | male | 38.0 | 0 | 0 | SOTON/O.Q. 3101306 | 7.05 | NaN | S |
466 | 467 | 0 | 2 | Campbell, Mr. William | male | NaN | 0 | 0 | 239853 | 0.0 | NaN | S |
467 | 468 | 0 | 1 | Smart, Mr. John Montgomery | male | 56.0 | 0 | 0 | 113792 | 26.55 | NaN | S |
468 | 469 | 0 | 3 | Scanlan, Mr. James | male | NaN | 0 | 0 | 36209 | 7.725 | NaN | Q |
469 | 470 | 1 | 3 | Baclini, Miss. Helene Barbara | female | 0.75 | 2 | 1 | 2666 | 19.2583 | NaN | C |
470 | 471 | 0 | 3 | Keefe, Mr. Arthur | male | NaN | 0 | 0 | 323592 | 7.25 | NaN | S |
471 | 472 | 0 | 3 | Cacic, Mr. Luka | male | 38.0 | 0 | 0 | 315089 | 8.6625 | NaN | S |
472 | 473 | 1 | 2 | West, Mrs. Edwy Arthur (Ada Mary Worth) | female | 33.0 | 1 | 2 | C.A. 34651 | 27.75 | NaN | S |
473 | 474 | 1 | 2 | Jerwan, Mrs. Amin S (Marie Marthe Thuillard) | female | 23.0 | 0 | 0 | SC/AH Basle 541 | 13.7917 | D | C |
474 | 475 | 0 | 3 | Strandberg, Miss. Ida Sofia | female | 22.0 | 0 | 0 | 7553 | 9.8375 | NaN | S |
475 | 476 | 0 | 1 | Clifford, Mr. George Quincy | male | NaN | 0 | 0 | 110465 | 52.0 | A14 | S |
476 | 477 | 0 | 2 | Renouf, Mr. Peter Henry | male | 34.0 | 1 | 0 | 31027 | 21.0 | NaN | S |
477 | 478 | 0 | 3 | Braund, Mr. Lewis Richard | male | 29.0 | 1 | 0 | 3460 | 7.0458 | NaN | S |
478 | 479 | 0 | 3 | Karlsson, Mr. Nils August | male | 22.0 | 0 | 0 | 350060 | 7.5208 | NaN | S |
479 | 480 | 1 | 3 | Hirvonen, Miss. Hildur E | female | 2.0 | 0 | 1 | 3101298 | 12.2875 | NaN | S |
480 | 481 | 0 | 3 | Goodwin, Master. Harold Victor | male | 9.0 | 5 | 2 | CA 2144 | 46.9 | NaN | S |
481 | 482 | 0 | 2 | Frost, Mr. Anthony Wood “Archie” | male | NaN | 0 | 0 | 239854 | 0.0 | NaN | S |
482 | 483 | 0 | 3 | Rouse, Mr. Richard Henry | male | 50.0 | 0 | 0 | A/5 3594 | 8.05 | NaN | S |
483 | 484 | 1 | 3 | Turkula, Mrs. (Hedwig) | female | 63.0 | 0 | 0 | 4134 | 9.5875 | NaN | S |
484 | 485 | 1 | 1 | Bishop, Mr. Dickinson H | male | 25.0 | 1 | 0 | 11967 | 91.0792 | B49 | C |
485 | 486 | 0 | 3 | Lefebre, Miss. Jeannie | female | NaN | 3 | 1 | 4133 | 25.4667 | NaN | S |
486 | 487 | 1 | 1 | Hoyt, Mrs. Frederick Maxfield (Jane Anne Forby) | female | 35.0 | 1 | 0 | 19943 | 90.0 | C93 | S |
487 | 488 | 0 | 1 | Kent, Mr. Edward Austin | male | 58.0 | 0 | 0 | 11771 | 29.7 | B37 | C |
488 | 489 | 0 | 3 | Somerton, Mr. Francis William | male | 30.0 | 0 | 0 | A.5. 18509 | 8.05 | NaN | S |
489 | 490 | 1 | 3 | Coutts, Master. Eden Leslie “Neville” | male | 9.0 | 1 | 1 | C.A. 37671 | 15.9 | NaN | S |
490 | 491 | 0 | 3 | Hagland, Mr. Konrad Mathias Reiersen | male | NaN | 1 | 0 | 65304 | 19.9667 | NaN | S |
491 | 492 | 0 | 3 | Windelov, Mr. Einar | male | 21.0 | 0 | 0 | SOTON/OQ 3101317 | 7.25 | NaN | S |
492 | 493 | 0 | 1 | Molson, Mr. Harry Markland | male | 55.0 | 0 | 0 | 113787 | 30.5 | C30 | S |
493 | 494 | 0 | 1 | Artagaveytia, Mr. Ramon | male | 71.0 | 0 | 0 | PC 17609 | 49.5042 | NaN | C |
494 | 495 | 0 | 3 | Stanley, Mr. Edward Roland | male | 21.0 | 0 | 0 | A/4 45380 | 8.05 | NaN | S |
495 | 496 | 0 | 3 | Yousseff, Mr. Gerious | male | NaN | 0 | 0 | 2627 | 14.4583 | NaN | C |
496 | 497 | 1 | 1 | Eustis, Miss. Elizabeth Mussey | female | 54.0 | 1 | 0 | 36947 | 78.2667 | D20 | C |
497 | 498 | 0 | 3 | Shellard, Mr. Frederick William | male | NaN | 0 | 0 | C.A. 6212 | 15.1 | NaN | S |
498 | 499 | 0 | 1 | Allison, Mrs. Hudson J C (Bessie Waldo Daniels) | female | 25.0 | 1 | 2 | 113781 | 151.55 | C22 C26 | S |
499 | 500 | 0 | 3 | Svensson, Mr. Olof | male | 24.0 | 0 | 0 | 350035 | 7.7958 | NaN | S |
500 | 501 | 0 | 3 | Calic, Mr. Petar | male | 17.0 | 0 | 0 | 315086 | 8.6625 | NaN | S |
501 | 502 | 0 | 3 | Canavan, Miss. Mary | female | 21.0 | 0 | 0 | 364846 | 7.75 | NaN | Q |
502 | 503 | 0 | 3 | O’Sullivan, Miss. Bridget Mary | female | NaN | 0 | 0 | 330909 | 7.6292 | NaN | Q |
503 | 504 | 0 | 3 | Laitinen, Miss. Kristina Sofia | female | 37.0 | 0 | 0 | 4135 | 9.5875 | NaN | S |
504 | 505 | 1 | 1 | Maioni, Miss. Roberta | female | 16.0 | 0 | 0 | 110152 | 86.5 | B79 | S |
505 | 506 | 0 | 1 | Penasco y Castellana, Mr. Victor de Satode | male | 18.0 | 1 | 0 | PC 17758 | 108.9 | C65 | C |
506 | 507 | 1 | 2 | Quick, Mrs. Frederick Charles (Jane Richards) | female | 33.0 | 0 | 2 | 26360 | 26.0 | NaN | S |
507 | 508 | 1 | 1 | Bradley, Mr. George (“George Arthur Brayton”) | male | NaN | 0 | 0 | 111427 | 26.55 | NaN | S |
508 | 509 | 0 | 3 | Olsen, Mr. Henry Margido | male | 28.0 | 0 | 0 | C 4001 | 22.525 | NaN | S |
509 | 510 | 1 | 3 | Lang, Mr. Fang | male | 26.0 | 0 | 0 | 1601 | 56.4958 | NaN | S |
510 | 511 | 1 | 3 | Daly, Mr. Eugene Patrick | male | 29.0 | 0 | 0 | 382651 | 7.75 | NaN | Q |
511 | 512 | 0 | 3 | Webber, Mr. James | male | NaN | 0 | 0 | SOTON/OQ 3101316 | 8.05 | NaN | S |
512 | 513 | 1 | 1 | McGough, Mr. James Robert | male | 36.0 | 0 | 0 | PC 17473 | 26.2875 | E25 | S |
513 | 514 | 1 | 1 | Rothschild, Mrs. Martin (Elizabeth L. Barrett) | female | 54.0 | 1 | 0 | PC 17603 | 59.4 | NaN | C |
514 | 515 | 0 | 3 | Coleff, Mr. Satio | male | 24.0 | 0 | 0 | 349209 | 7.4958 | NaN | S |
515 | 516 | 0 | 1 | Walker, Mr. William Anderson | male | 47.0 | 0 | 0 | 36967 | 34.0208 | D46 | S |
516 | 517 | 1 | 2 | Lemore, Mrs. (Amelia Milley) | female | 34.0 | 0 | 0 | C.A. 34260 | 10.5 | F33 | S |
517 | 518 | 0 | 3 | Ryan, Mr. Patrick | male | NaN | 0 | 0 | 371110 | 24.15 | NaN | Q |
518 | 519 | 1 | 2 | Angle, Mrs. William A (Florence “Mary” Agnes Hughes) | female | 36.0 | 1 | 0 | 226875 | 26.0 | NaN | S |
519 | 520 | 0 | 3 | Pavlovic, Mr. Stefo | male | 32.0 | 0 | 0 | 349242 | 7.8958 | NaN | S |
520 | 521 | 1 | 1 | Perreault, Miss. Anne | female | 30.0 | 0 | 0 | 12749 | 93.5 | B73 | S |
521 | 522 | 0 | 3 | Vovk, Mr. Janko | male | 22.0 | 0 | 0 | 349252 | 7.8958 | NaN | S |
522 | 523 | 0 | 3 | Lahoud, Mr. Sarkis | male | NaN | 0 | 0 | 2624 | 7.225 | NaN | C |
523 | 524 | 1 | 1 | Hippach, Mrs. Louis Albert (Ida Sophia Fischer) | female | 44.0 | 0 | 1 | 111361 | 57.9792 | B18 | C |
524 | 525 | 0 | 3 | Kassem, Mr. Fared | male | NaN | 0 | 0 | 2700 | 7.2292 | NaN | C |
525 | 526 | 0 | 3 | Farrell, Mr. James | male | 40.5 | 0 | 0 | 367232 | 7.75 | NaN | Q |
526 | 527 | 1 | 2 | Ridsdale, Miss. Lucy | female | 50.0 | 0 | 0 | W./C. 14258 | 10.5 | NaN | S |
527 | 528 | 0 | 1 | Farthing, Mr. John | male | NaN | 0 | 0 | PC 17483 | 221.7792 | C95 | S |
528 | 529 | 0 | 3 | Salonen, Mr. Johan Werner | male | 39.0 | 0 | 0 | 3101296 | 7.925 | NaN | S |
529 | 530 | 0 | 2 | Hocking, Mr. Richard George | male | 23.0 | 2 | 1 | 29104 | 11.5 | NaN | S |
530 | 531 | 1 | 2 | Quick, Miss. Phyllis May | female | 2.0 | 1 | 1 | 26360 | 26.0 | NaN | S |
531 | 532 | 0 | 3 | Toufik, Mr. Nakli | male | NaN | 0 | 0 | 2641 | 7.2292 | NaN | C |
532 | 533 | 0 | 3 | Elias, Mr. Joseph Jr | male | 17.0 | 1 | 1 | 2690 | 7.2292 | NaN | C |
533 | 534 | 1 | 3 | Peter, Mrs. Catherine (Catherine Rizk) | female | NaN | 0 | 2 | 2668 | 22.3583 | NaN | C |
534 | 535 | 0 | 3 | Cacic, Miss. Marija | female | 30.0 | 0 | 0 | 315084 | 8.6625 | NaN | S |
535 | 536 | 1 | 2 | Hart, Miss. Eva Miriam | female | 7.0 | 0 | 2 | F.C.C. 13529 | 26.25 | NaN | S |
536 | 537 | 0 | 1 | Butt, Major. Archibald Willingham | male | 45.0 | 0 | 0 | 113050 | 26.55 | B38 | S |
537 | 538 | 1 | 1 | LeRoy, Miss. Bertha | female | 30.0 | 0 | 0 | PC 17761 | 106.425 | NaN | C |
538 | 539 | 0 | 3 | Risien, Mr. Samuel Beard | male | NaN | 0 | 0 | 364498 | 14.5 | NaN | S |
539 | 540 | 1 | 1 | Frolicher, Miss. Hedwig Margaritha | female | 22.0 | 0 | 2 | 13568 | 49.5 | B39 | C |
540 | 541 | 1 | 1 | Crosby, Miss. Harriet R | female | 36.0 | 0 | 2 | WE/P 5735 | 71.0 | B22 | S |
541 | 542 | 0 | 3 | Andersson, Miss. Ingeborg Constanzia | female | 9.0 | 4 | 2 | 347082 | 31.275 | NaN | S |
542 | 543 | 0 | 3 | Andersson, Miss. Sigrid Elisabeth | female | 11.0 | 4 | 2 | 347082 | 31.275 | NaN | S |
543 | 544 | 1 | 2 | Beane, Mr. Edward | male | 32.0 | 1 | 0 | 2908 | 26.0 | NaN | S |
544 | 545 | 0 | 1 | Douglas, Mr. Walter Donald | male | 50.0 | 1 | 0 | PC 17761 | 106.425 | C86 | C |
545 | 546 | 0 | 1 | Nicholson, Mr. Arthur Ernest | male | 64.0 | 0 | 0 | 693 | 26.0 | NaN | S |
546 | 547 | 1 | 2 | Beane, Mrs. Edward (Ethel Clarke) | female | 19.0 | 1 | 0 | 2908 | 26.0 | NaN | S |
547 | 548 | 1 | 2 | Padro y Manent, Mr. Julian | male | NaN | 0 | 0 | SC/PARIS 2146 | 13.8625 | NaN | C |
548 | 549 | 0 | 3 | Goldsmith, Mr. Frank John | male | 33.0 | 1 | 1 | 363291 | 20.525 | NaN | S |
549 | 550 | 1 | 2 | Davies, Master. John Morgan Jr | male | 8.0 | 1 | 1 | C.A. 33112 | 36.75 | NaN | S |
550 | 551 | 1 | 1 | Thayer, Mr. John Borland Jr | male | 17.0 | 0 | 2 | 17421 | 110.8833 | C70 | C |
551 | 552 | 0 | 2 | Sharp, Mr. Percival James R | male | 27.0 | 0 | 0 | 244358 | 26.0 | NaN | S |
552 | 553 | 0 | 3 | O’Brien, Mr. Timothy | male | NaN | 0 | 0 | 330979 | 7.8292 | NaN | Q |
553 | 554 | 1 | 3 | Leeni, Mr. Fahim (“Philip Zenni”) | male | 22.0 | 0 | 0 | 2620 | 7.225 | NaN | C |
554 | 555 | 1 | 3 | Ohman, Miss. Velin | female | 22.0 | 0 | 0 | 347085 | 7.775 | NaN | S |
555 | 556 | 0 | 1 | Wright, Mr. George | male | 62.0 | 0 | 0 | 113807 | 26.55 | NaN | S |
556 | 557 | 1 | 1 | Duff Gordon, Lady. (Lucille Christiana Sutherland) (“Mrs Morgan”) | female | 48.0 | 1 | 0 | 11755 | 39.6 | A16 | C |
557 | 558 | 0 | 1 | Robbins, Mr. Victor | male | NaN | 0 | 0 | PC 17757 | 227.525 | NaN | C |
558 | 559 | 1 | 1 | Taussig, Mrs. Emil (Tillie Mandelbaum) | female | 39.0 | 1 | 1 | 110413 | 79.65 | E67 | S |
559 | 560 | 1 | 3 | de Messemaeker, Mrs. Guillaume Joseph (Emma) | female | 36.0 | 1 | 0 | 345572 | 17.4 | NaN | S |
560 | 561 | 0 | 3 | Morrow, Mr. Thomas Rowan | male | NaN | 0 | 0 | 372622 | 7.75 | NaN | Q |
561 | 562 | 0 | 3 | Sivic, Mr. Husein | male | 40.0 | 0 | 0 | 349251 | 7.8958 | NaN | S |
562 | 563 | 0 | 2 | Norman, Mr. Robert Douglas | male | 28.0 | 0 | 0 | 218629 | 13.5 | NaN | S |
563 | 564 | 0 | 3 | Simmons, Mr. John | male | NaN | 0 | 0 | SOTON/OQ 392082 | 8.05 | NaN | S |
564 | 565 | 0 | 3 | Meanwell, Miss. (Marion Ogden) | female | NaN | 0 | 0 | SOTON/O.Q. 392087 | 8.05 | NaN | S |
565 | 566 | 0 | 3 | Davies, Mr. Alfred J | male | 24.0 | 2 | 0 | A/4 48871 | 24.15 | NaN | S |
566 | 567 | 0 | 3 | Stoytcheff, Mr. Ilia | male | 19.0 | 0 | 0 | 349205 | 7.8958 | NaN | S |
567 | 568 | 0 | 3 | Palsson, Mrs. Nils (Alma Cornelia Berglund) | female | 29.0 | 0 | 4 | 349909 | 21.075 | NaN | S |
568 | 569 | 0 | 3 | Doharr, Mr. Tannous | male | NaN | 0 | 0 | 2686 | 7.2292 | NaN | C |
569 | 570 | 1 | 3 | Jonsson, Mr. Carl | male | 32.0 | 0 | 0 | 350417 | 7.8542 | NaN | S |
570 | 571 | 1 | 2 | Harris, Mr. George | male | 62.0 | 0 | 0 | S.W./PP 752 | 10.5 | NaN | S |
571 | 572 | 1 | 1 | Appleton, Mrs. Edward Dale (Charlotte Lamson) | female | 53.0 | 2 | 0 | 11769 | 51.4792 | C101 | S |
572 | 573 | 1 | 1 | Flynn, Mr. John Irwin (“Irving”) | male | 36.0 | 0 | 0 | PC 17474 | 26.3875 | E25 | S |
573 | 574 | 1 | 3 | Kelly, Miss. Mary | female | NaN | 0 | 0 | 14312 | 7.75 | NaN | Q |
574 | 575 | 0 | 3 | Rush, Mr. Alfred George John | male | 16.0 | 0 | 0 | A/4. 20589 | 8.05 | NaN | S |
575 | 576 | 0 | 3 | Patchett, Mr. George | male | 19.0 | 0 | 0 | 358585 | 14.5 | NaN | S |
576 | 577 | 1 | 2 | Garside, Miss. Ethel | female | 34.0 | 0 | 0 | 243880 | 13.0 | NaN | S |
577 | 578 | 1 | 1 | Silvey, Mrs. William Baird (Alice Munger) | female | 39.0 | 1 | 0 | 13507 | 55.9 | E44 | S |
578 | 579 | 0 | 3 | Caram, Mrs. Joseph (Maria Elias) | female | NaN | 1 | 0 | 2689 | 14.4583 | NaN | C |
579 | 580 | 1 | 3 | Jussila, Mr. Eiriik | male | 32.0 | 0 | 0 | STON/O 2. 3101286 | 7.925 | NaN | S |
580 | 581 | 1 | 2 | Christy, Miss. Julie Rachel | female | 25.0 | 1 | 1 | 237789 | 30.0 | NaN | S |
581 | 582 | 1 | 1 | Thayer, Mrs. John Borland (Marian Longstreth Morris) | female | 39.0 | 1 | 1 | 17421 | 110.8833 | C68 | C |
582 | 583 | 0 | 2 | Downton, Mr. William James | male | 54.0 | 0 | 0 | 28403 | 26.0 | NaN | S |
583 | 584 | 0 | 1 | Ross, Mr. John Hugo | male | 36.0 | 0 | 0 | 13049 | 40.125 | A10 | C |
584 | 585 | 0 | 3 | Paulner, Mr. Uscher | male | NaN | 0 | 0 | 3411 | 8.7125 | NaN | C |
585 | 586 | 1 | 1 | Taussig, Miss. Ruth | female | 18.0 | 0 | 2 | 110413 | 79.65 | E68 | S |
586 | 587 | 0 | 2 | Jarvis, Mr. John Denzil | male | 47.0 | 0 | 0 | 237565 | 15.0 | NaN | S |
587 | 588 | 1 | 1 | Frolicher-Stehli, Mr. Maxmillian | male | 60.0 | 1 | 1 | 13567 | 79.2 | B41 | C |
588 | 589 | 0 | 3 | Gilinski, Mr. Eliezer | male | 22.0 | 0 | 0 | 14973 | 8.05 | NaN | S |
589 | 590 | 0 | 3 | Murdlin, Mr. Joseph | male | NaN | 0 | 0 | A./5. 3235 | 8.05 | NaN | S |
590 | 591 | 0 | 3 | Rintamaki, Mr. Matti | male | 35.0 | 0 | 0 | STON/O 2. 3101273 | 7.125 | NaN | S |
591 | 592 | 1 | 1 | Stephenson, Mrs. Walter Bertram (Martha Eustis) | female | 52.0 | 1 | 0 | 36947 | 78.2667 | D20 | C |
592 | 593 | 0 | 3 | Elsbury, Mr. William James | male | 47.0 | 0 | 0 | A/5 3902 | 7.25 | NaN | S |
593 | 594 | 0 | 3 | Bourke, Miss. Mary | female | NaN | 0 | 2 | 364848 | 7.75 | NaN | Q |
594 | 595 | 0 | 2 | Chapman, Mr. John Henry | male | 37.0 | 1 | 0 | SC/AH 29037 | 26.0 | NaN | S |
595 | 596 | 0 | 3 | Van Impe, Mr. Jean Baptiste | male | 36.0 | 1 | 1 | 345773 | 24.15 | NaN | S |
596 | 597 | 1 | 2 | Leitch, Miss. Jessie Wills | female | NaN | 0 | 0 | 248727 | 33.0 | NaN | S |
597 | 598 | 0 | 3 | Johnson, Mr. Alfred | male | 49.0 | 0 | 0 | LINE | 0.0 | NaN | S |
598 | 599 | 0 | 3 | Boulos, Mr. Hanna | male | NaN | 0 | 0 | 2664 | 7.225 | NaN | C |
599 | 600 | 1 | 1 | Duff Gordon, Sir. Cosmo Edmund (“Mr Morgan”) | male | 49.0 | 1 | 0 | PC 17485 | 56.9292 | A20 | C |
600 | 601 | 1 | 2 | Jacobsohn, Mrs. Sidney Samuel (Amy Frances Christy) | female | 24.0 | 2 | 1 | 243847 | 27.0 | NaN | S |
601 | 602 | 0 | 3 | Slabenoff, Mr. Petco | male | NaN | 0 | 0 | 349214 | 7.8958 | NaN | S |
602 | 603 | 0 | 1 | Harrington, Mr. Charles H | male | NaN | 0 | 0 | 113796 | 42.4 | NaN | S |
603 | 604 | 0 | 3 | Torber, Mr. Ernst William | male | 44.0 | 0 | 0 | 364511 | 8.05 | NaN | S |
604 | 605 | 1 | 1 | Homer, Mr. Harry (“Mr E Haven”) | male | 35.0 | 0 | 0 | 111426 | 26.55 | NaN | C |
605 | 606 | 0 | 3 | Lindell, Mr. Edvard Bengtsson | male | 36.0 | 1 | 0 | 349910 | 15.55 | NaN | S |
606 | 607 | 0 | 3 | Karaic, Mr. Milan | male | 30.0 | 0 | 0 | 349246 | 7.8958 | NaN | S |
607 | 608 | 1 | 1 | Daniel, Mr. Robert Williams | male | 27.0 | 0 | 0 | 113804 | 30.5 | NaN | S |
608 | 609 | 1 | 2 | Laroche, Mrs. Joseph (Juliette Marie Louise Lafargue) | female | 22.0 | 1 | 2 | SC/Paris 2123 | 41.5792 | NaN | C |
609 | 610 | 1 | 1 | Shutes, Miss. Elizabeth W | female | 40.0 | 0 | 0 | PC 17582 | 153.4625 | C125 | S |
610 | 611 | 0 | 3 | Andersson, Mrs. Anders Johan (Alfrida Konstantia Brogren) | female | 39.0 | 1 | 5 | 347082 | 31.275 | NaN | S |
611 | 612 | 0 | 3 | Jardin, Mr. Jose Neto | male | NaN | 0 | 0 | SOTON/O.Q. 3101305 | 7.05 | NaN | S |
612 | 613 | 1 | 3 | Murphy, Miss. Margaret Jane | female | NaN | 1 | 0 | 367230 | 15.5 | NaN | Q |
613 | 614 | 0 | 3 | Horgan, Mr. John | male | NaN | 0 | 0 | 370377 | 7.75 | NaN | Q |
614 | 615 | 0 | 3 | Brocklebank, Mr. William Alfred | male | 35.0 | 0 | 0 | 364512 | 8.05 | NaN | S |
615 | 616 | 1 | 2 | Herman, Miss. Alice | female | 24.0 | 1 | 2 | 220845 | 65.0 | NaN | S |
616 | 617 | 0 | 3 | Danbom, Mr. Ernst Gilbert | male | 34.0 | 1 | 1 | 347080 | 14.4 | NaN | S |
617 | 618 | 0 | 3 | Lobb, Mrs. William Arthur (Cordelia K Stanlick) | female | 26.0 | 1 | 0 | A/5. 3336 | 16.1 | NaN | S |
618 | 619 | 1 | 2 | Becker, Miss. Marion Louise | female | 4.0 | 2 | 1 | 230136 | 39.0 | F4 | S |
619 | 620 | 0 | 2 | Gavey, Mr. Lawrence | male | 26.0 | 0 | 0 | 31028 | 10.5 | NaN | S |
620 | 621 | 0 | 3 | Yasbeck, Mr. Antoni | male | 27.0 | 1 | 0 | 2659 | 14.4542 | NaN | C |
621 | 622 | 1 | 1 | Kimball, Mr. Edwin Nelson Jr | male | 42.0 | 1 | 0 | 11753 | 52.5542 | D19 | S |
622 | 623 | 1 | 3 | Nakid, Mr. Sahid | male | 20.0 | 1 | 1 | 2653 | 15.7417 | NaN | C |
623 | 624 | 0 | 3 | Hansen, Mr. Henry Damsgaard | male | 21.0 | 0 | 0 | 350029 | 7.8542 | NaN | S |
624 | 625 | 0 | 3 | Bowen, Mr. David John “Dai” | male | 21.0 | 0 | 0 | 54636 | 16.1 | NaN | S |
625 | 626 | 0 | 1 | Sutton, Mr. Frederick | male | 61.0 | 0 | 0 | 36963 | 32.3208 | D50 | S |
626 | 627 | 0 | 2 | Kirkland, Rev. Charles Leonard | male | 57.0 | 0 | 0 | 219533 | 12.35 | NaN | Q |
627 | 628 | 1 | 1 | Longley, Miss. Gretchen Fiske | female | 21.0 | 0 | 0 | 13502 | 77.9583 | D9 | S |
628 | 629 | 0 | 3 | Bostandyeff, Mr. Guentcho | male | 26.0 | 0 | 0 | 349224 | 7.8958 | NaN | S |
629 | 630 | 0 | 3 | O’Connell, Mr. Patrick D | male | NaN | 0 | 0 | 334912 | 7.7333 | NaN | Q |
630 | 631 | 1 | 1 | Barkworth, Mr. Algernon Henry Wilson | male | 80.0 | 0 | 0 | 27042 | 30.0 | A23 | S |
631 | 632 | 0 | 3 | Lundahl, Mr. Johan Svensson | male | 51.0 | 0 | 0 | 347743 | 7.0542 | NaN | S |
632 | 633 | 1 | 1 | Stahelin-Maeglin, Dr. Max | male | 32.0 | 0 | 0 | 13214 | 30.5 | B50 | C |
633 | 634 | 0 | 1 | Parr, Mr. William Henry Marsh | male | NaN | 0 | 0 | 112052 | 0.0 | NaN | S |
634 | 635 | 0 | 3 | Skoog, Miss. Mabel | female | 9.0 | 3 | 2 | 347088 | 27.9 | NaN | S |
635 | 636 | 1 | 2 | Davis, Miss. Mary | female | 28.0 | 0 | 0 | 237668 | 13.0 | NaN | S |
636 | 637 | 0 | 3 | Leinonen, Mr. Antti Gustaf | male | 32.0 | 0 | 0 | STON/O 2. 3101292 | 7.925 | NaN | S |
637 | 638 | 0 | 2 | Collyer, Mr. Harvey | male | 31.0 | 1 | 1 | C.A. 31921 | 26.25 | NaN | S |
638 | 639 | 0 | 3 | Panula, Mrs. Juha (Maria Emilia Ojala) | female | 41.0 | 0 | 5 | 3101295 | 39.6875 | NaN | S |
639 | 640 | 0 | 3 | Thorneycroft, Mr. Percival | male | NaN | 1 | 0 | 376564 | 16.1 | NaN | S |
640 | 641 | 0 | 3 | Jensen, Mr. Hans Peder | male | 20.0 | 0 | 0 | 350050 | 7.8542 | NaN | S |
641 | 642 | 1 | 1 | Sagesser, Mlle. Emma | female | 24.0 | 0 | 0 | PC 17477 | 69.3 | B35 | C |
642 | 643 | 0 | 3 | Skoog, Miss. Margit Elizabeth | female | 2.0 | 3 | 2 | 347088 | 27.9 | NaN | S |
643 | 644 | 1 | 3 | Foo, Mr. Choong | male | NaN | 0 | 0 | 1601 | 56.4958 | NaN | S |
644 | 645 | 1 | 3 | Baclini, Miss. Eugenie | female | 0.75 | 2 | 1 | 2666 | 19.2583 | NaN | C |
645 | 646 | 1 | 1 | Harper, Mr. Henry Sleeper | male | 48.0 | 1 | 0 | PC 17572 | 76.7292 | D33 | C |
646 | 647 | 0 | 3 | Cor, Mr. Liudevit | male | 19.0 | 0 | 0 | 349231 | 7.8958 | NaN | S |
647 | 648 | 1 | 1 | Simonius-Blumer, Col. Oberst Alfons | male | 56.0 | 0 | 0 | 13213 | 35.5 | A26 | C |
648 | 649 | 0 | 3 | Willey, Mr. Edward | male | NaN | 0 | 0 | S.O./P.P. 751 | 7.55 | NaN | S |
649 | 650 | 1 | 3 | Stanley, Miss. Amy Zillah Elsie | female | 23.0 | 0 | 0 | CA. 2314 | 7.55 | NaN | S |
650 | 651 | 0 | 3 | Mitkoff, Mr. Mito | male | NaN | 0 | 0 | 349221 | 7.8958 | NaN | S |
651 | 652 | 1 | 2 | Doling, Miss. Elsie | female | 18.0 | 0 | 1 | 231919 | 23.0 | NaN | S |
652 | 653 | 0 | 3 | Kalvik, Mr. Johannes Halvorsen | male | 21.0 | 0 | 0 | 8475 | 8.4333 | NaN | S |
653 | 654 | 1 | 3 | O’Leary, Miss. Hanora “Norah” | female | NaN | 0 | 0 | 330919 | 7.8292 | NaN | Q |
654 | 655 | 0 | 3 | Hegarty, Miss. Hanora “Nora” | female | 18.0 | 0 | 0 | 365226 | 6.75 | NaN | Q |
655 | 656 | 0 | 2 | Hickman, Mr. Leonard Mark | male | 24.0 | 2 | 0 | S.O.C. 14879 | 73.5 | NaN | S |
656 | 657 | 0 | 3 | Radeff, Mr. Alexander | male | NaN | 0 | 0 | 349223 | 7.8958 | NaN | S |
657 | 658 | 0 | 3 | Bourke, Mrs. John (Catherine) | female | 32.0 | 1 | 1 | 364849 | 15.5 | NaN | Q |
658 | 659 | 0 | 2 | Eitemiller, Mr. George Floyd | male | 23.0 | 0 | 0 | 29751 | 13.0 | NaN | S |
659 | 660 | 0 | 1 | Newell, Mr. Arthur Webster | male | 58.0 | 0 | 2 | 35273 | 113.275 | D48 | C |
660 | 661 | 1 | 1 | Frauenthal, Dr. Henry William | male | 50.0 | 2 | 0 | PC 17611 | 133.65 | NaN | S |
661 | 662 | 0 | 3 | Badt, Mr. Mohamed | male | 40.0 | 0 | 0 | 2623 | 7.225 | NaN | C |
662 | 663 | 0 | 1 | Colley, Mr. Edward Pomeroy | male | 47.0 | 0 | 0 | 5727 | 25.5875 | E58 | S |
663 | 664 | 0 | 3 | Coleff, Mr. Peju | male | 36.0 | 0 | 0 | 349210 | 7.4958 | NaN | S |
664 | 665 | 1 | 3 | Lindqvist, Mr. Eino William | male | 20.0 | 1 | 0 | STON/O 2. 3101285 | 7.925 | NaN | S |
665 | 666 | 0 | 2 | Hickman, Mr. Lewis | male | 32.0 | 2 | 0 | S.O.C. 14879 | 73.5 | NaN | S |
666 | 667 | 0 | 2 | Butler, Mr. Reginald Fenton | male | 25.0 | 0 | 0 | 234686 | 13.0 | NaN | S |
667 | 668 | 0 | 3 | Rommetvedt, Mr. Knud Paust | male | NaN | 0 | 0 | 312993 | 7.775 | NaN | S |
668 | 669 | 0 | 3 | Cook, Mr. Jacob | male | 43.0 | 0 | 0 | A/5 3536 | 8.05 | NaN | S |
669 | 670 | 1 | 1 | Taylor, Mrs. Elmer Zebley (Juliet Cummins Wright) | female | NaN | 1 | 0 | 19996 | 52.0 | C126 | S |
670 | 671 | 1 | 2 | Brown, Mrs. Thomas William Solomon (Elizabeth Catherine Ford) | female | 40.0 | 1 | 1 | 29750 | 39.0 | NaN | S |
671 | 672 | 0 | 1 | Davidson, Mr. Thornton | male | 31.0 | 1 | 0 | F.C. 12750 | 52.0 | B71 | S |
672 | 673 | 0 | 2 | Mitchell, Mr. Henry Michael | male | 70.0 | 0 | 0 | C.A. 24580 | 10.5 | NaN | S |
673 | 674 | 1 | 2 | Wilhelms, Mr. Charles | male | 31.0 | 0 | 0 | 244270 | 13.0 | NaN | S |
674 | 675 | 0 | 2 | Watson, Mr. Ennis Hastings | male | NaN | 0 | 0 | 239856 | 0.0 | NaN | S |
675 | 676 | 0 | 3 | Edvardsson, Mr. Gustaf Hjalmar | male | 18.0 | 0 | 0 | 349912 | 7.775 | NaN | S |
676 | 677 | 0 | 3 | Sawyer, Mr. Frederick Charles | male | 24.5 | 0 | 0 | 342826 | 8.05 | NaN | S |
677 | 678 | 1 | 3 | Turja, Miss. Anna Sofia | female | 18.0 | 0 | 0 | 4138 | 9.8417 | NaN | S |
678 | 679 | 0 | 3 | Goodwin, Mrs. Frederick (Augusta Tyler) | female | 43.0 | 1 | 6 | CA 2144 | 46.9 | NaN | S |
679 | 680 | 1 | 1 | Cardeza, Mr. Thomas Drake Martinez | male | 36.0 | 0 | 1 | PC 17755 | 512.3292 | B51 B53 B55 | C |
680 | 681 | 0 | 3 | Peters, Miss. Katie | female | NaN | 0 | 0 | 330935 | 8.1375 | NaN | Q |
681 | 682 | 1 | 1 | Hassab, Mr. Hammad | male | 27.0 | 0 | 0 | PC 17572 | 76.7292 | D49 | C |
682 | 683 | 0 | 3 | Olsvigen, Mr. Thor Anderson | male | 20.0 | 0 | 0 | 6563 | 9.225 | NaN | S |
683 | 684 | 0 | 3 | Goodwin, Mr. Charles Edward | male | 14.0 | 5 | 2 | CA 2144 | 46.9 | NaN | S |
684 | 685 | 0 | 2 | Brown, Mr. Thomas William Solomon | male | 60.0 | 1 | 1 | 29750 | 39.0 | NaN | S |
685 | 686 | 0 | 2 | Laroche, Mr. Joseph Philippe Lemercier | male | 25.0 | 1 | 2 | SC/Paris 2123 | 41.5792 | NaN | C |
686 | 687 | 0 | 3 | Panula, Mr. Jaako Arnold | male | 14.0 | 4 | 1 | 3101295 | 39.6875 | NaN | S |
687 | 688 | 0 | 3 | Dakic, Mr. Branko | male | 19.0 | 0 | 0 | 349228 | 10.1708 | NaN | S |
688 | 689 | 0 | 3 | Fischer, Mr. Eberhard Thelander | male | 18.0 | 0 | 0 | 350036 | 7.7958 | NaN | S |
689 | 690 | 1 | 1 | Madill, Miss. Georgette Alexandra | female | 15.0 | 0 | 1 | 24160 | 211.3375 | B5 | S |
690 | 691 | 1 | 1 | Dick, Mr. Albert Adrian | male | 31.0 | 1 | 0 | 17474 | 57.0 | B20 | S |
691 | 692 | 1 | 3 | Karun, Miss. Manca | female | 4.0 | 0 | 1 | 349256 | 13.4167 | NaN | C |
692 | 693 | 1 | 3 | Lam, Mr. Ali | male | NaN | 0 | 0 | 1601 | 56.4958 | NaN | S |
693 | 694 | 0 | 3 | Saad, Mr. Khalil | male | 25.0 | 0 | 0 | 2672 | 7.225 | NaN | C |
694 | 695 | 0 | 1 | Weir, Col. John | male | 60.0 | 0 | 0 | 113800 | 26.55 | NaN | S |
695 | 696 | 0 | 2 | Chapman, Mr. Charles Henry | male | 52.0 | 0 | 0 | 248731 | 13.5 | NaN | S |
696 | 697 | 0 | 3 | Kelly, Mr. James | male | 44.0 | 0 | 0 | 363592 | 8.05 | NaN | S |
697 | 698 | 1 | 3 | Mullens, Miss. Katherine “Katie” | female | NaN | 0 | 0 | 35852 | 7.7333 | NaN | Q |
698 | 699 | 0 | 1 | Thayer, Mr. John Borland | male | 49.0 | 1 | 1 | 17421 | 110.8833 | C68 | C |
699 | 700 | 0 | 3 | Humblen, Mr. Adolf Mathias Nicolai Olsen | male | 42.0 | 0 | 0 | 348121 | 7.65 | F G63 | S |
700 | 701 | 1 | 1 | Astor, Mrs. John Jacob (Madeleine Talmadge Force) | female | 18.0 | 1 | 0 | PC 17757 | 227.525 | C62 C64 | C |
701 | 702 | 1 | 1 | Silverthorne, Mr. Spencer Victor | male | 35.0 | 0 | 0 | PC 17475 | 26.2875 | E24 | S |
702 | 703 | 0 | 3 | Barbara, Miss. Saiide | female | 18.0 | 0 | 1 | 2691 | 14.4542 | NaN | C |
703 | 704 | 0 | 3 | Gallagher, Mr. Martin | male | 25.0 | 0 | 0 | 36864 | 7.7417 | NaN | Q |
704 | 705 | 0 | 3 | Hansen, Mr. Henrik Juul | male | 26.0 | 1 | 0 | 350025 | 7.8542 | NaN | S |
705 | 706 | 0 | 2 | Morley, Mr. Henry Samuel (“Mr Henry Marshall”) | male | 39.0 | 0 | 0 | 250655 | 26.0 | NaN | S |
706 | 707 | 1 | 2 | Kelly, Mrs. Florence “Fannie” | female | 45.0 | 0 | 0 | 223596 | 13.5 | NaN | S |
707 | 708 | 1 | 1 | Calderhead, Mr. Edward Pennington | male | 42.0 | 0 | 0 | PC 17476 | 26.2875 | E24 | S |
708 | 709 | 1 | 1 | Cleaver, Miss. Alice | female | 22.0 | 0 | 0 | 113781 | 151.55 | NaN | S |
709 | 710 | 1 | 3 | Moubarek, Master. Halim Gonios (“William George”) | male | NaN | 1 | 1 | 2661 | 15.2458 | NaN | C |
710 | 711 | 1 | 1 | Mayne, Mlle. Berthe Antonine (“Mrs de Villiers”) | female | 24.0 | 0 | 0 | PC 17482 | 49.5042 | C90 | C |
711 | 712 | 0 | 1 | Klaber, Mr. Herman | male | NaN | 0 | 0 | 113028 | 26.55 | C124 | S |
712 | 713 | 1 | 1 | Taylor, Mr. Elmer Zebley | male | 48.0 | 1 | 0 | 19996 | 52.0 | C126 | S |
713 | 714 | 0 | 3 | Larsson, Mr. August Viktor | male | 29.0 | 0 | 0 | 7545 | 9.4833 | NaN | S |
714 | 715 | 0 | 2 | Greenberg, Mr. Samuel | male | 52.0 | 0 | 0 | 250647 | 13.0 | NaN | S |
715 | 716 | 0 | 3 | Soholt, Mr. Peter Andreas Lauritz Andersen | male | 19.0 | 0 | 0 | 348124 | 7.65 | F G73 | S |
716 | 717 | 1 | 1 | Endres, Miss. Caroline Louise | female | 38.0 | 0 | 0 | PC 17757 | 227.525 | C45 | C |
717 | 718 | 1 | 2 | Troutt, Miss. Edwina Celia “Winnie” | female | 27.0 | 0 | 0 | 34218 | 10.5 | E101 | S |
718 | 719 | 0 | 3 | McEvoy, Mr. Michael | male | NaN | 0 | 0 | 36568 | 15.5 | NaN | Q |
719 | 720 | 0 | 3 | Johnson, Mr. Malkolm Joackim | male | 33.0 | 0 | 0 | 347062 | 7.775 | NaN | S |
720 | 721 | 1 | 2 | Harper, Miss. Annie Jessie “Nina” | female | 6.0 | 0 | 1 | 248727 | 33.0 | NaN | S |
721 | 722 | 0 | 3 | Jensen, Mr. Svend Lauritz | male | 17.0 | 1 | 0 | 350048 | 7.0542 | NaN | S |
722 | 723 | 0 | 2 | Gillespie, Mr. William Henry | male | 34.0 | 0 | 0 | 12233 | 13.0 | NaN | S |
723 | 724 | 0 | 2 | Hodges, Mr. Henry Price | male | 50.0 | 0 | 0 | 250643 | 13.0 | NaN | S |
724 | 725 | 1 | 1 | Chambers, Mr. Norman Campbell | male | 27.0 | 1 | 0 | 113806 | 53.1 | E8 | S |
725 | 726 | 0 | 3 | Oreskovic, Mr. Luka | male | 20.0 | 0 | 0 | 315094 | 8.6625 | NaN | S |
726 | 727 | 1 | 2 | Renouf, Mrs. Peter Henry (Lillian Jefferys) | female | 30.0 | 3 | 0 | 31027 | 21.0 | NaN | S |
727 | 728 | 1 | 3 | Mannion, Miss. Margareth | female | NaN | 0 | 0 | 36866 | 7.7375 | NaN | Q |
728 | 729 | 0 | 2 | Bryhl, Mr. Kurt Arnold Gottfrid | male | 25.0 | 1 | 0 | 236853 | 26.0 | NaN | S |
729 | 730 | 0 | 3 | Ilmakangas, Miss. Pieta Sofia | female | 25.0 | 1 | 0 | STON/O2. 3101271 | 7.925 | NaN | S |
730 | 731 | 1 | 1 | Allen, Miss. Elisabeth Walton | female | 29.0 | 0 | 0 | 24160 | 211.3375 | B5 | S |
731 | 732 | 0 | 3 | Hassan, Mr. Houssein G N | male | 11.0 | 0 | 0 | 2699 | 18.7875 | NaN | C |
732 | 733 | 0 | 2 | Knight, Mr. Robert J | male | NaN | 0 | 0 | 239855 | 0.0 | NaN | S |
733 | 734 | 0 | 2 | Berriman, Mr. William John | male | 23.0 | 0 | 0 | 28425 | 13.0 | NaN | S |
734 | 735 | 0 | 2 | Troupiansky, Mr. Moses Aaron | male | 23.0 | 0 | 0 | 233639 | 13.0 | NaN | S |
735 | 736 | 0 | 3 | Williams, Mr. Leslie | male | 28.5 | 0 | 0 | 54636 | 16.1 | NaN | S |
736 | 737 | 0 | 3 | Ford, Mrs. Edward (Margaret Ann Watson) | female | 48.0 | 1 | 3 | W./C. 6608 | 34.375 | NaN | S |
737 | 738 | 1 | 1 | Lesurer, Mr. Gustave J | male | 35.0 | 0 | 0 | PC 17755 | 512.3292 | B101 | C |
738 | 739 | 0 | 3 | Ivanoff, Mr. Kanio | male | NaN | 0 | 0 | 349201 | 7.8958 | NaN | S |
739 | 740 | 0 | 3 | Nankoff, Mr. Minko | male | NaN | 0 | 0 | 349218 | 7.8958 | NaN | S |
740 | 741 | 1 | 1 | Hawksford, Mr. Walter James | male | NaN | 0 | 0 | 16988 | 30.0 | D45 | S |
741 | 742 | 0 | 1 | Cavendish, Mr. Tyrell William | male | 36.0 | 1 | 0 | 19877 | 78.85 | C46 | S |
742 | 743 | 1 | 1 | Ryerson, Miss. Susan Parker “Suzette” | female | 21.0 | 2 | 2 | PC 17608 | 262.375 | B57 B59 B63 B66 | C |
743 | 744 | 0 | 3 | McNamee, Mr. Neal | male | 24.0 | 1 | 0 | 376566 | 16.1 | NaN | S |
744 | 745 | 1 | 3 | Stranden, Mr. Juho | male | 31.0 | 0 | 0 | STON/O 2. 3101288 | 7.925 | NaN | S |
745 | 746 | 0 | 1 | Crosby, Capt. Edward Gifford | male | 70.0 | 1 | 1 | WE/P 5735 | 71.0 | B22 | S |
746 | 747 | 0 | 3 | Abbott, Mr. Rossmore Edward | male | 16.0 | 1 | 1 | C.A. 2673 | 20.25 | NaN | S |
747 | 748 | 1 | 2 | Sinkkonen, Miss. Anna | female | 30.0 | 0 | 0 | 250648 | 13.0 | NaN | S |
748 | 749 | 0 | 1 | Marvin, Mr. Daniel Warner | male | 19.0 | 1 | 0 | 113773 | 53.1 | D30 | S |
749 | 750 | 0 | 3 | Connaghton, Mr. Michael | male | 31.0 | 0 | 0 | 335097 | 7.75 | NaN | Q |
750 | 751 | 1 | 2 | Wells, Miss. Joan | female | 4.0 | 1 | 1 | 29103 | 23.0 | NaN | S |
751 | 752 | 1 | 3 | Moor, Master. Meier | male | 6.0 | 0 | 1 | 392096 | 12.475 | E121 | S |
752 | 753 | 0 | 3 | Vande Velde, Mr. Johannes Joseph | male | 33.0 | 0 | 0 | 345780 | 9.5 | NaN | S |
753 | 754 | 0 | 3 | Jonkoff, Mr. Lalio | male | 23.0 | 0 | 0 | 349204 | 7.8958 | NaN | S |
754 | 755 | 1 | 2 | Herman, Mrs. Samuel (Jane Laver) | female | 48.0 | 1 | 2 | 220845 | 65.0 | NaN | S |
755 | 756 | 1 | 2 | Hamalainen, Master. Viljo | male | 0.67 | 1 | 1 | 250649 | 14.5 | NaN | S |
756 | 757 | 0 | 3 | Carlsson, Mr. August Sigfrid | male | 28.0 | 0 | 0 | 350042 | 7.7958 | NaN | S |
757 | 758 | 0 | 2 | Bailey, Mr. Percy Andrew | male | 18.0 | 0 | 0 | 29108 | 11.5 | NaN | S |
758 | 759 | 0 | 3 | Theobald, Mr. Thomas Leonard | male | 34.0 | 0 | 0 | 363294 | 8.05 | NaN | S |
759 | 760 | 1 | 1 | Rothes, the Countess. of (Lucy Noel Martha Dyer-Edwards) | female | 33.0 | 0 | 0 | 110152 | 86.5 | B77 | S |
760 | 761 | 0 | 3 | Garfirth, Mr. John | male | NaN | 0 | 0 | 358585 | 14.5 | NaN | S |
761 | 762 | 0 | 3 | Nirva, Mr. Iisakki Antino Aijo | male | 41.0 | 0 | 0 | SOTON/O2 3101272 | 7.125 | NaN | S |
762 | 763 | 1 | 3 | Barah, Mr. Hanna Assi | male | 20.0 | 0 | 0 | 2663 | 7.2292 | NaN | C |
763 | 764 | 1 | 1 | Carter, Mrs. William Ernest (Lucile Polk) | female | 36.0 | 1 | 2 | 113760 | 120.0 | B96 B98 | S |
764 | 765 | 0 | 3 | Eklund, Mr. Hans Linus | male | 16.0 | 0 | 0 | 347074 | 7.775 | NaN | S |
765 | 766 | 1 | 1 | Hogeboom, Mrs. John C (Anna Andrews) | female | 51.0 | 1 | 0 | 13502 | 77.9583 | D11 | S |
766 | 767 | 0 | 1 | Brewe, Dr. Arthur Jackson | male | NaN | 0 | 0 | 112379 | 39.6 | NaN | C |
767 | 768 | 0 | 3 | Mangan, Miss. Mary | female | 30.5 | 0 | 0 | 364850 | 7.75 | NaN | Q |
768 | 769 | 0 | 3 | Moran, Mr. Daniel J | male | NaN | 1 | 0 | 371110 | 24.15 | NaN | Q |
769 | 770 | 0 | 3 | Gronnestad, Mr. Daniel Danielsen | male | 32.0 | 0 | 0 | 8471 | 8.3625 | NaN | S |
770 | 771 | 0 | 3 | Lievens, Mr. Rene Aime | male | 24.0 | 0 | 0 | 345781 | 9.5 | NaN | S |
771 | 772 | 0 | 3 | Jensen, Mr. Niels Peder | male | 48.0 | 0 | 0 | 350047 | 7.8542 | NaN | S |
772 | 773 | 0 | 2 | Mack, Mrs. (Mary) | female | 57.0 | 0 | 0 | S.O./P.P. 3 | 10.5 | E77 | S |
773 | 774 | 0 | 3 | Elias, Mr. Dibo | male | NaN | 0 | 0 | 2674 | 7.225 | NaN | C |
774 | 775 | 1 | 2 | Hocking, Mrs. Elizabeth (Eliza Needs) | female | 54.0 | 1 | 3 | 29105 | 23.0 | NaN | S |
775 | 776 | 0 | 3 | Myhrman, Mr. Pehr Fabian Oliver Malkolm | male | 18.0 | 0 | 0 | 347078 | 7.75 | NaN | S |
776 | 777 | 0 | 3 | Tobin, Mr. Roger | male | NaN | 0 | 0 | 383121 | 7.75 | F38 | Q |
777 | 778 | 1 | 3 | Emanuel, Miss. Virginia Ethel | female | 5.0 | 0 | 0 | 364516 | 12.475 | NaN | S |
778 | 779 | 0 | 3 | Kilgannon, Mr. Thomas J | male | NaN | 0 | 0 | 36865 | 7.7375 | NaN | Q |
779 | 780 | 1 | 1 | Robert, Mrs. Edward Scott (Elisabeth Walton McMillan) | female | 43.0 | 0 | 1 | 24160 | 211.3375 | B3 | S |
780 | 781 | 1 | 3 | Ayoub, Miss. Banoura | female | 13.0 | 0 | 0 | 2687 | 7.2292 | NaN | C |
781 | 782 | 1 | 1 | Dick, Mrs. Albert Adrian (Vera Gillespie) | female | 17.0 | 1 | 0 | 17474 | 57.0 | B20 | S |
782 | 783 | 0 | 1 | Long, Mr. Milton Clyde | male | 29.0 | 0 | 0 | 113501 | 30.0 | D6 | S |
783 | 784 | 0 | 3 | Johnston, Mr. Andrew G | male | NaN | 1 | 2 | W./C. 6607 | 23.45 | NaN | S |
784 | 785 | 0 | 3 | Ali, Mr. William | male | 25.0 | 0 | 0 | SOTON/O.Q. 3101312 | 7.05 | NaN | S |
785 | 786 | 0 | 3 | Harmer, Mr. Abraham (David Lishin) | male | 25.0 | 0 | 0 | 374887 | 7.25 | NaN | S |
786 | 787 | 1 | 3 | Sjoblom, Miss. Anna Sofia | female | 18.0 | 0 | 0 | 3101265 | 7.4958 | NaN | S |
787 | 788 | 0 | 3 | Rice, Master. George Hugh | male | 8.0 | 4 | 1 | 382652 | 29.125 | NaN | Q |
788 | 789 | 1 | 3 | Dean, Master. Bertram Vere | male | 1.0 | 1 | 2 | C.A. 2315 | 20.575 | NaN | S |
789 | 790 | 0 | 1 | Guggenheim, Mr. Benjamin | male | 46.0 | 0 | 0 | PC 17593 | 79.2 | B82 B84 | C |
790 | 791 | 0 | 3 | Keane, Mr. Andrew “Andy” | male | NaN | 0 | 0 | 12460 | 7.75 | NaN | Q |
791 | 792 | 0 | 2 | Gaskell, Mr. Alfred | male | 16.0 | 0 | 0 | 239865 | 26.0 | NaN | S |
792 | 793 | 0 | 3 | Sage, Miss. Stella Anna | female | NaN | 8 | 2 | CA. 2343 | 69.55 | NaN | S |
793 | 794 | 0 | 1 | Hoyt, Mr. William Fisher | male | NaN | 0 | 0 | PC 17600 | 30.6958 | NaN | C |
794 | 795 | 0 | 3 | Dantcheff, Mr. Ristiu | male | 25.0 | 0 | 0 | 349203 | 7.8958 | NaN | S |
795 | 796 | 0 | 2 | Otter, Mr. Richard | male | 39.0 | 0 | 0 | 28213 | 13.0 | NaN | S |
796 | 797 | 1 | 1 | Leader, Dr. Alice (Farnham) | female | 49.0 | 0 | 0 | 17465 | 25.9292 | D17 | S |
797 | 798 | 1 | 3 | Osman, Mrs. Mara | female | 31.0 | 0 | 0 | 349244 | 8.6833 | NaN | S |
798 | 799 | 0 | 3 | Ibrahim Shawah, Mr. Yousseff | male | 30.0 | 0 | 0 | 2685 | 7.2292 | NaN | C |
799 | 800 | 0 | 3 | Van Impe, Mrs. Jean Baptiste (Rosalie Paula Govaert) | female | 30.0 | 1 | 1 | 345773 | 24.15 | NaN | S |
800 | 801 | 0 | 2 | Ponesell, Mr. Martin | male | 34.0 | 0 | 0 | 250647 | 13.0 | NaN | S |
801 | 802 | 1 | 2 | Collyer, Mrs. Harvey (Charlotte Annie Tate) | female | 31.0 | 1 | 1 | C.A. 31921 | 26.25 | NaN | S |
802 | 803 | 1 | 1 | Carter, Master. William Thornton II | male | 11.0 | 1 | 2 | 113760 | 120.0 | B96 B98 | S |
803 | 804 | 1 | 3 | Thomas, Master. Assad Alexander | male | 0.42 | 0 | 1 | 2625 | 8.5167 | NaN | C |
804 | 805 | 1 | 3 | Hedman, Mr. Oskar Arvid | male | 27.0 | 0 | 0 | 347089 | 6.975 | NaN | S |
805 | 806 | 0 | 3 | Johansson, Mr. Karl Johan | male | 31.0 | 0 | 0 | 347063 | 7.775 | NaN | S |
806 | 807 | 0 | 1 | Andrews, Mr. Thomas Jr | male | 39.0 | 0 | 0 | 112050 | 0.0 | A36 | S |
807 | 808 | 0 | 3 | Pettersson, Miss. Ellen Natalia | female | 18.0 | 0 | 0 | 347087 | 7.775 | NaN | S |
808 | 809 | 0 | 2 | Meyer, Mr. August | male | 39.0 | 0 | 0 | 248723 | 13.0 | NaN | S |
809 | 810 | 1 | 1 | Chambers, Mrs. Norman Campbell (Bertha Griggs) | female | 33.0 | 1 | 0 | 113806 | 53.1 | E8 | S |
810 | 811 | 0 | 3 | Alexander, Mr. William | male | 26.0 | 0 | 0 | 3474 | 7.8875 | NaN | S |
811 | 812 | 0 | 3 | Lester, Mr. James | male | 39.0 | 0 | 0 | A/4 48871 | 24.15 | NaN | S |
812 | 813 | 0 | 2 | Slemen, Mr. Richard James | male | 35.0 | 0 | 0 | 28206 | 10.5 | NaN | S |
813 | 814 | 0 | 3 | Andersson, Miss. Ebba Iris Alfrida | female | 6.0 | 4 | 2 | 347082 | 31.275 | NaN | S |
814 | 815 | 0 | 3 | Tomlin, Mr. Ernest Portage | male | 30.5 | 0 | 0 | 364499 | 8.05 | NaN | S |
815 | 816 | 0 | 1 | Fry, Mr. Richard | male | NaN | 0 | 0 | 112058 | 0.0 | B102 | S |
816 | 817 | 0 | 3 | Heininen, Miss. Wendla Maria | female | 23.0 | 0 | 0 | STON/O2. 3101290 | 7.925 | NaN | S |
817 | 818 | 0 | 2 | Mallet, Mr. Albert | male | 31.0 | 1 | 1 | S.C./PARIS 2079 | 37.0042 | NaN | C |
818 | 819 | 0 | 3 | Holm, Mr. John Fredrik Alexander | male | 43.0 | 0 | 0 | C 7075 | 6.45 | NaN | S |
819 | 820 | 0 | 3 | Skoog, Master. Karl Thorsten | male | 10.0 | 3 | 2 | 347088 | 27.9 | NaN | S |
820 | 821 | 1 | 1 | Hays, Mrs. Charles Melville (Clara Jennings Gregg) | female | 52.0 | 1 | 1 | 12749 | 93.5 | B69 | S |
821 | 822 | 1 | 3 | Lulic, Mr. Nikola | male | 27.0 | 0 | 0 | 315098 | 8.6625 | NaN | S |
822 | 823 | 0 | 1 | Reuchlin, Jonkheer. John George | male | 38.0 | 0 | 0 | 19972 | 0.0 | NaN | S |
823 | 824 | 1 | 3 | Moor, Mrs. (Beila) | female | 27.0 | 0 | 1 | 392096 | 12.475 | E121 | S |
824 | 825 | 0 | 3 | Panula, Master. Urho Abraham | male | 2.0 | 4 | 1 | 3101295 | 39.6875 | NaN | S |
825 | 826 | 0 | 3 | Flynn, Mr. John | male | NaN | 0 | 0 | 368323 | 6.95 | NaN | Q |
826 | 827 | 0 | 3 | Lam, Mr. Len | male | NaN | 0 | 0 | 1601 | 56.4958 | NaN | S |
827 | 828 | 1 | 2 | Mallet, Master. Andre | male | 1.0 | 0 | 2 | S.C./PARIS 2079 | 37.0042 | NaN | C |
828 | 829 | 1 | 3 | McCormack, Mr. Thomas Joseph | male | NaN | 0 | 0 | 367228 | 7.75 | NaN | Q |
829 | 830 | 1 | 1 | Stone, Mrs. George Nelson (Martha Evelyn) | female | 62.0 | 0 | 0 | 113572 | 80.0 | B28 | NaN |
830 | 831 | 1 | 3 | Yasbeck, Mrs. Antoni (Selini Alexander) | female | 15.0 | 1 | 0 | 2659 | 14.4542 | NaN | C |
831 | 832 | 1 | 2 | Richards, Master. George Sibley | male | 0.83 | 1 | 1 | 29106 | 18.75 | NaN | S |
832 | 833 | 0 | 3 | Saad, Mr. Amin | male | NaN | 0 | 0 | 2671 | 7.2292 | NaN | C |
833 | 834 | 0 | 3 | Augustsson, Mr. Albert | male | 23.0 | 0 | 0 | 347468 | 7.8542 | NaN | S |
834 | 835 | 0 | 3 | Allum, Mr. Owen George | male | 18.0 | 0 | 0 | 2223 | 8.3 | NaN | S |
835 | 836 | 1 | 1 | Compton, Miss. Sara Rebecca | female | 39.0 | 1 | 1 | PC 17756 | 83.1583 | E49 | C |
836 | 837 | 0 | 3 | Pasic, Mr. Jakob | male | 21.0 | 0 | 0 | 315097 | 8.6625 | NaN | S |
837 | 838 | 0 | 3 | Sirota, Mr. Maurice | male | NaN | 0 | 0 | 392092 | 8.05 | NaN | S |
838 | 839 | 1 | 3 | Chip, Mr. Chang | male | 32.0 | 0 | 0 | 1601 | 56.4958 | NaN | S |
839 | 840 | 1 | 1 | Marechal, Mr. Pierre | male | NaN | 0 | 0 | 11774 | 29.7 | C47 | C |
840 | 841 | 0 | 3 | Alhomaki, Mr. Ilmari Rudolf | male | 20.0 | 0 | 0 | SOTON/O2 3101287 | 7.925 | NaN | S |
841 | 842 | 0 | 2 | Mudd, Mr. Thomas Charles | male | 16.0 | 0 | 0 | S.O./P.P. 3 | 10.5 | NaN | S |
842 | 843 | 1 | 1 | Serepeca, Miss. Augusta | female | 30.0 | 0 | 0 | 113798 | 31.0 | NaN | C |
843 | 844 | 0 | 3 | Lemberopolous, Mr. Peter L | male | 34.5 | 0 | 0 | 2683 | 6.4375 | NaN | C |
844 | 845 | 0 | 3 | Culumovic, Mr. Jeso | male | 17.0 | 0 | 0 | 315090 | 8.6625 | NaN | S |
845 | 846 | 0 | 3 | Abbing, Mr. Anthony | male | 42.0 | 0 | 0 | C.A. 5547 | 7.55 | NaN | S |
846 | 847 | 0 | 3 | Sage, Mr. Douglas Bullen | male | NaN | 8 | 2 | CA. 2343 | 69.55 | NaN | S |
847 | 848 | 0 | 3 | Markoff, Mr. Marin | male | 35.0 | 0 | 0 | 349213 | 7.8958 | NaN | C |
848 | 849 | 0 | 2 | Harper, Rev. John | male | 28.0 | 0 | 1 | 248727 | 33.0 | NaN | S |
849 | 850 | 1 | 1 | Goldenberg, Mrs. Samuel L (Edwiga Grabowska) | female | NaN | 1 | 0 | 17453 | 89.1042 | C92 | C |
850 | 851 | 0 | 3 | Andersson, Master. Sigvard Harald Elias | male | 4.0 | 4 | 2 | 347082 | 31.275 | NaN | S |
851 | 852 | 0 | 3 | Svensson, Mr. Johan | male | 74.0 | 0 | 0 | 347060 | 7.775 | NaN | S |
852 | 853 | 0 | 3 | Boulos, Miss. Nourelain | female | 9.0 | 1 | 1 | 2678 | 15.2458 | NaN | C |
853 | 854 | 1 | 1 | Lines, Miss. Mary Conover | female | 16.0 | 0 | 1 | PC 17592 | 39.4 | D28 | S |
854 | 855 | 0 | 2 | Carter, Mrs. Ernest Courtenay (Lilian Hughes) | female | 44.0 | 1 | 0 | 244252 | 26.0 | NaN | S |
855 | 856 | 1 | 3 | Aks, Mrs. Sam (Leah Rosen) | female | 18.0 | 0 | 1 | 392091 | 9.35 | NaN | S |
856 | 857 | 1 | 1 | Wick, Mrs. George Dennick (Mary Hitchcock) | female | 45.0 | 1 | 1 | 36928 | 164.8667 | NaN | S |
857 | 858 | 1 | 1 | Daly, Mr. Peter Denis | male | 51.0 | 0 | 0 | 113055 | 26.55 | E17 | S |
858 | 859 | 1 | 3 | Baclini, Mrs. Solomon (Latifa Qurban) | female | 24.0 | 0 | 3 | 2666 | 19.2583 | NaN | C |
859 | 860 | 0 | 3 | Razi, Mr. Raihed | male | NaN | 0 | 0 | 2629 | 7.2292 | NaN | C |
860 | 861 | 0 | 3 | Hansen, Mr. Claus Peter | male | 41.0 | 2 | 0 | 350026 | 14.1083 | NaN | S |
861 | 862 | 0 | 2 | Giles, Mr. Frederick Edward | male | 21.0 | 1 | 0 | 28134 | 11.5 | NaN | S |
862 | 863 | 1 | 1 | Swift, Mrs. Frederick Joel (Margaret Welles Barron) | female | 48.0 | 0 | 0 | 17466 | 25.9292 | D17 | S |
863 | 864 | 0 | 3 | Sage, Miss. Dorothy Edith “Dolly” | female | NaN | 8 | 2 | CA. 2343 | 69.55 | NaN | S |
864 | 865 | 0 | 2 | Gill, Mr. John William | male | 24.0 | 0 | 0 | 233866 | 13.0 | NaN | S |
865 | 866 | 1 | 2 | Bystrom, Mrs. (Karolina) | female | 42.0 | 0 | 0 | 236852 | 13.0 | NaN | S |
866 | 867 | 1 | 2 | Duran y More, Miss. Asuncion | female | 27.0 | 1 | 0 | SC/PARIS 2149 | 13.8583 | NaN | C |
867 | 868 | 0 | 1 | Roebling, Mr. Washington Augustus II | male | 31.0 | 0 | 0 | PC 17590 | 50.4958 | A24 | S |
868 | 869 | 0 | 3 | van Melkebeke, Mr. Philemon | male | NaN | 0 | 0 | 345777 | 9.5 | NaN | S |
869 | 870 | 1 | 3 | Johnson, Master. Harold Theodor | male | 4.0 | 1 | 1 | 347742 | 11.1333 | NaN | S |
870 | 871 | 0 | 3 | Balkic, Mr. Cerin | male | 26.0 | 0 | 0 | 349248 | 7.8958 | NaN | S |
871 | 872 | 1 | 1 | Beckwith, Mrs. Richard Leonard (Sallie Monypeny) | female | 47.0 | 1 | 1 | 11751 | 52.5542 | D35 | S |
872 | 873 | 0 | 1 | Carlsson, Mr. Frans Olof | male | 33.0 | 0 | 0 | 695 | 5.0 | B51 B53 B55 | S |
873 | 874 | 0 | 3 | Vander Cruyssen, Mr. Victor | male | 47.0 | 0 | 0 | 345765 | 9.0 | NaN | S |
874 | 875 | 1 | 2 | Abelson, Mrs. Samuel (Hannah Wizosky) | female | 28.0 | 1 | 0 | P/PP 3381 | 24.0 | NaN | C |
875 | 876 | 1 | 3 | Najib, Miss. Adele Kiamie “Jane” | female | 15.0 | 0 | 0 | 2667 | 7.225 | NaN | C |
876 | 877 | 0 | 3 | Gustafsson, Mr. Alfred Ossian | male | 20.0 | 0 | 0 | 7534 | 9.8458 | NaN | S |
877 | 878 | 0 | 3 | Petroff, Mr. Nedelio | male | 19.0 | 0 | 0 | 349212 | 7.8958 | NaN | S |
878 | 879 | 0 | 3 | Laleff, Mr. Kristo | male | NaN | 0 | 0 | 349217 | 7.8958 | NaN | S |
879 | 880 | 1 | 1 | Potter, Mrs. Thomas Jr (Lily Alexenia Wilson) | female | 56.0 | 0 | 1 | 11767 | 83.1583 | C50 | C |
880 | 881 | 1 | 2 | Shelley, Mrs. William (Imanita Parrish Hall) | female | 25.0 | 0 | 1 | 230433 | 26.0 | NaN | S |
881 | 882 | 0 | 3 | Markun, Mr. Johann | male | 33.0 | 0 | 0 | 349257 | 7.8958 | NaN | S |
882 | 883 | 0 | 3 | Dahlberg, Miss. Gerda Ulrika | female | 22.0 | 0 | 0 | 7552 | 10.5167 | NaN | S |
883 | 884 | 0 | 2 | Banfield, Mr. Frederick James | male | 28.0 | 0 | 0 | C.A./SOTON 34068 | 10.5 | NaN | S |
884 | 885 | 0 | 3 | Sutehall, Mr. Henry Jr | male | 25.0 | 0 | 0 | SOTON/OQ 392076 | 7.05 | NaN | S |
885 | 886 | 0 | 3 | Rice, Mrs. William (Margaret Norton) | female | 39.0 | 0 | 5 | 382652 | 29.125 | NaN | Q |
886 | 887 | 0 | 2 | Montvila, Rev. Juozas | male | 27.0 | 0 | 0 | 211536 | 13.0 | NaN | S |
887 | 888 | 1 | 1 | Graham, Miss. Margaret Edith | female | 19.0 | 0 | 0 | 112053 | 30.0 | B42 | S |
888 | 889 | 0 | 3 | Johnston, Miss. Catherine Helen “Carrie” | female | NaN | 1 | 2 | W./C. 6607 | 23.45 | NaN | S |
889 | 890 | 1 | 1 | Behr, Mr. Karl Howell | male | 26.0 | 0 | 0 | 111369 | 30.0 | C148 | C |
890 | 891 | 0 | 3 | Dooley, Mr. Patrick | male | 32.0 | 0 | 0 | 370376 | 7.75 | NaN | Q |
Data exploration examples
In short, data exploration is an iterative process that helps to better understand the data and identify potential issues or patterns that may be relevant for further analysis. Some everyday tasks that are performed during data exploration include:
- Examining the distribution of values for each variable
- Identifying any missing or incomplete data
- Detecting outliers or unusual values
- Calculating summary statistics such as mean, median, and standard deviation
- Visualizing relationships between variables using plots such as scatterplots or histograms.
Next, we will see the most useful data exploration functions in Pandas that are commonly used in data science and analysis.
The head() and tail()
The head() and tail() functions allow you to view the first or last few rows of a DataFrame, which can help get a feel for the data and identify any issues or patterns.
titanic_df.head()
index | PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.25 | NaN | S |
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Thayer) | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.925 | NaN | S |
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1 | C123 | S |
4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.05 | NaN | S |
titanic_df.tail()
index | PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked |
---|---|---|---|---|---|---|---|---|---|---|---|---|
886 | 887 | 0 | 2 | Montvila, Rev. Juozas | male | 27.0 | 0 | 0 | 211536 | 13.0 | NaN | S |
887 | 888 | 1 | 1 | Graham, Miss. Margaret Edith | female | 19.0 | 0 | 0 | 112053 | 30.0 | B42 | S |
888 | 889 | 0 | 3 | Johnston, Miss. Catherine Helen “Carrie” | female | NaN | 1 | 2 | W./C. 6607 | 23.45 | NaN | S |
889 | 890 | 1 | 1 | Behr, Mr. Karl Howell | male | 26.0 | 0 | 0 | 111369 | 30.0 | C148 | C |
890 | 891 | 0 | 3 | Dooley, Mr. Patrick | male | 32.0 | 0 | 0 | 370376 | 7.75 | NaN | Q |
The describe()
The describe() function calculates a set of summary statistics for each column in a DataFrame, including the count, mean, median, standard deviation, and quartiles. It can be a quick and easy way to get a dataset summary.
titanic_df.describe()
index | PassengerId | Survived | Pclass | Age | SibSp | Parch | Fare |
---|---|---|---|---|---|---|---|
count | 891.0 | 891.0 | 891.0 | 714.0 | 891.0 | 891.0 | 891.0 |
mean | 446.0 | 0.34 | 2.31 | 29.70 | 0.52 | 0.38 | 32.20 |
std | 257.35 | 0.49 | 0.84 | 14.53 | 1.10 | 0.81 | 49.69 |
min | 1.0 | 0.0 | 1.0 | 0.42 | 0.0 | 0.0 | 0.0 |
25% | 223.5 | 0.0 | 2.0 | 20.13 | 0.0 | 0.0 | 7.91 |
50% | 446.0 | 0.0 | 3.0 | 28.0 | 0.0 | 0.0 | 14.46 |
75% | 668.5 | 1.0 | 3.0 | 38.0 | 1.0 | 0.0 | 31.0 |
max | 891.0 | 1.0 | 3.0 | 80.0 | 8.0 | 6.0 | 512.33 |
The value_counts()
The value_counts() function counts the number of occurrences of each unique value in a Pandas Series (i.e., a single column of a DataFrame). It can be used to identify the most common values in a column and detect any unusual or unexpected ones. For instance, we can see passenger age distribution with value_counts() as follows and observe that the largest age group is people 24 years old.
titanic_df["Age"].value_counts(ascending=True)
74.00 1 14.50 1 70.50 1 12.00 1 36.50 1 .. 30.00 25 19.00 25 18.00 26 22.00 27 24.00 30 Name: Age, Length: 88, dtype: int64
The corr()
The corr() function calculates the correlation between pairs of columns in a DataFrame. It can be used to identify relationships between variables and detect any multicollinearity.
titanic_df.corr()
index | PassengerId | Survived | Pclass | Age | SibSp | Parch | Fare |
---|---|---|---|---|---|---|---|
PassengerId | 1.0 | -0.01 | -0.04 | 0.04 | -0.06 | -0.0 | 0.01 |
Survived | -0.01 | 1.0 | -0.34 | -0.08 | -0.04 | 0.08 | 0.26 |
Pclass | -0.04 | -0.34 | 1.0 | -0.37 | 0.08 | 0.02 | -0.55 |
Age | 0.04 | -0.08 | -0.37 | 1.0 | -0.31 | -0.19 | 0.1 |
SibSp | -0.06 | -0.04 | 0.08 | -0.31 | 1.0 | 0.41 | 0.16 |
Parch | -0.0 | 0.08 | 0.02 | -0.19 | 0.41 | 1.0 | 0.22 |
Fare | 0.01 | 0.26 | -0.55 | 0.1 | 0.16 | 0.22 | 1.0 |
The info()
The info() function provides a summary of a Pandas DataFrame, including the number of rows and columns, the data type of each column, and the number of non-missing values in each column. It can help get a high-level overview of a dataset and identify any potential data issues or problems.
titanic_df.info()
RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns): # Column Non-Null Count Dtype --- ----------- -------------- ----- 0 PassengerId 891 non-null int64 1 Survived 891 non-null int64 2 Pclass 891 non-null int64 3 Name 891 non-null object 4 Sex 891 non-null object 5 Age 714 non-null float64 6 SibSp 891 non-null int64 7 Parch 891 non-null int64 8 Ticket 891 non-null object 9 Fare 891 non-null float64 10 Cabin 204 non-null object 11 Embarked 889 non-null object dtypes: float64(2), int64(5), object(5) memory usage: 83.7+ KB
Data Cleansing
Finding missing values
Real-life data often contains missing values that require removal or preprocessing. The simplest way to find missing values represented by NaN (which means “Not A Number”), which is a particular floating-point value and cannot be converted to any other type than float, is by using
.isna().any() and .isna().sum() functions. For null values, we similarly use isnull() function.
Firstly, let’s check the size of the Titanic dataset using the built-in shape sequence returning the number of rows and columns in the dataframe.
# The size of loaded dataset
titanic_df.shape
(891, 12)
# Finding all columns with NaN values:
titanic_df.isna().any()
PassengerId False Survived False Pclass False Name False Sex False Age True SibSp False Parch False Ticket False Fare False Cabin True Embarked True dtype: bool
With the sum() function, we see the total number of rows with the NaN values for each column.
titanic_df.isna().sum()
PassengerId 0 Survived 0 Pclass 0 Name 0 Sex 0 Age 177 SibSp 0 Parch 0 Ticket 0 Fare 0 Cabin 687 Embarked 2 dtype: int64
Alternatively, we can select all columns with NaNs as follow.
# Selecting all columns with NaN values
titanic_df[titanic_df.columns[titanic_df.isna().any()]]
index | Age | Cabin | Embarked |
---|---|---|---|
0 | 22.0 | NaN | S |
1 | 38.0 | C85 | C |
2 | 26.0 | NaN | S |
3 | 35.0 | C123 | S |
4 | 35.0 | NaN | S |
5 | NaN | NaN | Q |
6 | 54.0 | E46 | S |
7 | 2.0 | NaN | S |
8 | 27.0 | NaN | S |
9 | 14.0 | NaN | C |
10 | 4.0 | G6 | S |
11 | 58.0 | C103 | S |
12 | 20.0 | NaN | S |
13 | 39.0 | NaN | S |
14 | 14.0 | NaN | S |
15 | 55.0 | NaN | S |
16 | 2.0 | NaN | Q |
17 | NaN | NaN | S |
18 | 31.0 | NaN | S |
19 | NaN | NaN | C |
20 | 35.0 | NaN | S |
21 | 34.0 | D56 | S |
22 | 15.0 | NaN | Q |
23 | 28.0 | A6 | S |
24 | 8.0 | NaN | S |
25 | 38.0 | NaN | S |
26 | NaN | NaN | C |
27 | 19.0 | C23 C25 C27 | S |
28 | NaN | NaN | Q |
29 | NaN | NaN | S |
30 | 40.0 | NaN | C |
31 | NaN | B78 | C |
32 | NaN | NaN | Q |
33 | 66.0 | NaN | S |
34 | 28.0 | NaN | C |
35 | 42.0 | NaN | S |
36 | NaN | NaN | C |
37 | 21.0 | NaN | S |
38 | 18.0 | NaN | S |
39 | 14.0 | NaN | C |
40 | 40.0 | NaN | S |
41 | 27.0 | NaN | S |
42 | NaN | NaN | C |
43 | 3.0 | NaN | C |
44 | 19.0 | NaN | Q |
45 | NaN | NaN | S |
46 | NaN | NaN | Q |
47 | NaN | NaN | Q |
48 | NaN | NaN | C |
49 | 18.0 | NaN | S |
50 | 7.0 | NaN | S |
51 | 21.0 | NaN | S |
52 | 49.0 | D33 | C |
53 | 29.0 | NaN | S |
54 | 65.0 | B30 | C |
55 | NaN | C52 | S |
56 | 21.0 | NaN | S |
57 | 28.5 | NaN | C |
58 | 5.0 | NaN | S |
59 | 11.0 | NaN | S |
60 | 22.0 | NaN | C |
61 | 38.0 | B28 | NaN |
62 | 45.0 | C83 | S |
63 | 4.0 | NaN | S |
64 | NaN | NaN | C |
65 | NaN | NaN | C |
66 | 29.0 | F33 | S |
67 | 19.0 | NaN | S |
68 | 17.0 | NaN | S |
69 | 26.0 | NaN | S |
70 | 32.0 | NaN | S |
71 | 16.0 | NaN | S |
72 | 21.0 | NaN | S |
73 | 26.0 | NaN | C |
74 | 32.0 | NaN | S |
75 | 25.0 | F G73 | S |
76 | NaN | NaN | S |
77 | NaN | NaN | S |
78 | 0.83 | NaN | S |
79 | 30.0 | NaN | S |
80 | 22.0 | NaN | S |
81 | 29.0 | NaN | S |
82 | NaN | NaN | Q |
83 | 28.0 | NaN | S |
84 | 17.0 | NaN | S |
85 | 33.0 | NaN | S |
86 | 16.0 | NaN | S |
87 | NaN | NaN | S |
88 | 23.0 | C23 C25 C27 | S |
89 | 24.0 | NaN | S |
90 | 29.0 | NaN | S |
91 | 20.0 | NaN | S |
92 | 46.0 | E31 | S |
93 | 26.0 | NaN | S |
94 | 59.0 | NaN | S |
95 | NaN | NaN | S |
96 | 71.0 | A5 | C |
97 | 23.0 | D10 D12 | C |
98 | 34.0 | NaN | S |
99 | 34.0 | NaN | S |
100 | 28.0 | NaN | S |
101 | NaN | NaN | S |
102 | 21.0 | D26 | S |
103 | 33.0 | NaN | S |
104 | 37.0 | NaN | S |
105 | 28.0 | NaN | S |
106 | 21.0 | NaN | S |
107 | NaN | NaN | S |
108 | 38.0 | NaN | S |
109 | NaN | NaN | Q |
110 | 47.0 | C110 | S |
111 | 14.5 | NaN | C |
112 | 22.0 | NaN | S |
113 | 20.0 | NaN | S |
114 | 17.0 | NaN | C |
115 | 21.0 | NaN | S |
116 | 70.5 | NaN | Q |
117 | 29.0 | NaN | S |
118 | 24.0 | B58 B60 | C |
119 | 2.0 | NaN | S |
120 | 21.0 | NaN | S |
121 | NaN | NaN | S |
122 | 32.5 | NaN | C |
123 | 32.5 | E101 | S |
124 | 54.0 | D26 | S |
125 | 12.0 | NaN | C |
126 | NaN | NaN | Q |
127 | 24.0 | NaN | S |
128 | NaN | F E69 | C |
129 | 45.0 | NaN | S |
130 | 33.0 | NaN | C |
131 | 20.0 | NaN | S |
132 | 47.0 | NaN | S |
133 | 29.0 | NaN | S |
134 | 25.0 | NaN | S |
135 | 23.0 | NaN | C |
136 | 19.0 | D47 | S |
137 | 37.0 | C123 | S |
138 | 16.0 | NaN | S |
139 | 24.0 | B86 | C |
140 | NaN | NaN | C |
141 | 22.0 | NaN | S |
142 | 24.0 | NaN | S |
143 | 19.0 | NaN | Q |
144 | 18.0 | NaN | S |
145 | 19.0 | NaN | S |
146 | 27.0 | NaN | S |
147 | 9.0 | NaN | S |
148 | 36.5 | F2 | S |
149 | 42.0 | NaN | S |
150 | 51.0 | NaN | S |
151 | 22.0 | C2 | S |
152 | 55.5 | NaN | S |
153 | 40.5 | NaN | S |
154 | NaN | NaN | S |
155 | 51.0 | NaN | C |
156 | 16.0 | NaN | Q |
157 | 30.0 | NaN | S |
158 | NaN | NaN | S |
159 | NaN | NaN | S |
160 | 44.0 | NaN | S |
161 | 40.0 | NaN | S |
162 | 26.0 | NaN | S |
163 | 17.0 | NaN | S |
164 | 1.0 | NaN | S |
165 | 9.0 | NaN | S |
166 | NaN | E33 | S |
167 | 45.0 | NaN | S |
168 | NaN | NaN | S |
169 | 28.0 | NaN | S |
170 | 61.0 | B19 | S |
171 | 4.0 | NaN | Q |
172 | 1.0 | NaN | S |
173 | 21.0 | NaN | S |
174 | 56.0 | A7 | C |
175 | 18.0 | NaN | S |
176 | NaN | NaN | S |
177 | 50.0 | C49 | C |
178 | 30.0 | NaN | S |
179 | 36.0 | NaN | S |
180 | NaN | NaN | S |
181 | NaN | NaN | C |
182 | 9.0 | NaN | S |
183 | 1.0 | F4 | S |
184 | 4.0 | NaN | S |
185 | NaN | A32 | S |
186 | NaN | NaN | Q |
187 | 45.0 | NaN | S |
188 | 40.0 | NaN | Q |
189 | 36.0 | NaN | S |
190 | 32.0 | NaN | S |
191 | 19.0 | NaN | S |
192 | 19.0 | NaN | S |
193 | 3.0 | F2 | S |
194 | 44.0 | B4 | C |
195 | 58.0 | B80 | C |
196 | NaN | NaN | Q |
197 | 42.0 | NaN | S |
198 | NaN | NaN | Q |
199 | 24.0 | NaN | S |
200 | 28.0 | NaN | S |
201 | NaN | NaN | S |
202 | 34.0 | NaN | S |
203 | 45.5 | NaN | C |
204 | 18.0 | NaN | S |
205 | 2.0 | G6 | S |
206 | 32.0 | NaN | S |
207 | 26.0 | NaN | C |
208 | 16.0 | NaN | Q |
209 | 40.0 | A31 | C |
210 | 24.0 | NaN | S |
211 | 35.0 | NaN | S |
212 | 22.0 | NaN | S |
213 | 30.0 | NaN | S |
214 | NaN | NaN | Q |
215 | 31.0 | D36 | C |
216 | 27.0 | NaN | S |
217 | 42.0 | NaN | S |
218 | 32.0 | D15 | C |
219 | 30.0 | NaN | S |
220 | 16.0 | NaN | S |
221 | 27.0 | NaN | S |
222 | 51.0 | NaN | S |
223 | NaN | NaN | S |
224 | 38.0 | C93 | S |
225 | 22.0 | NaN | S |
226 | 19.0 | NaN | S |
227 | 20.5 | NaN | S |
228 | 18.0 | NaN | S |
229 | NaN | NaN | S |
230 | 35.0 | C83 | S |
231 | 29.0 | NaN | S |
232 | 59.0 | NaN | S |
233 | 5.0 | NaN | S |
234 | 24.0 | NaN | S |
235 | NaN | NaN | S |
236 | 44.0 | NaN | S |
237 | 8.0 | NaN | S |
238 | 19.0 | NaN | S |
239 | 33.0 | NaN | S |
240 | NaN | NaN | C |
241 | NaN | NaN | Q |
242 | 29.0 | NaN | S |
243 | 22.0 | NaN | S |
244 | 30.0 | NaN | C |
245 | 44.0 | C78 | Q |
246 | 25.0 | NaN | S |
247 | 24.0 | NaN | S |
248 | 37.0 | D35 | S |
249 | 54.0 | NaN | S |
250 | NaN | NaN | S |
251 | 29.0 | G6 | S |
252 | 62.0 | C87 | S |
253 | 30.0 | NaN | S |
254 | 41.0 | NaN | S |
255 | 29.0 | NaN | C |
256 | NaN | NaN | C |
257 | 30.0 | B77 | S |
258 | 35.0 | NaN | C |
259 | 50.0 | NaN | S |
260 | NaN | NaN | Q |
261 | 3.0 | NaN | S |
262 | 52.0 | E67 | S |
263 | 40.0 | B94 | S |
264 | NaN | NaN | Q |
265 | 36.0 | NaN | S |
266 | 16.0 | NaN | S |
267 | 25.0 | NaN | S |
268 | 58.0 | C125 | S |
269 | 35.0 | C99 | S |
270 | NaN | NaN | S |
271 | 25.0 | NaN | S |
272 | 41.0 | NaN | S |
273 | 37.0 | C118 | C |
274 | NaN | NaN | Q |
275 | 63.0 | D7 | S |
276 | 45.0 | NaN | S |
277 | NaN | NaN | S |
278 | 7.0 | NaN | Q |
279 | 35.0 | NaN | S |
280 | 65.0 | NaN | Q |
281 | 28.0 | NaN | S |
282 | 16.0 | NaN | S |
283 | 19.0 | NaN | S |
284 | NaN | A19 | S |
285 | 33.0 | NaN | C |
286 | 30.0 | NaN | S |
287 | 22.0 | NaN | S |
288 | 42.0 | NaN | S |
289 | 22.0 | NaN | Q |
290 | 26.0 | NaN | S |
291 | 19.0 | B49 | C |
292 | 36.0 | D | C |
293 | 24.0 | NaN | S |
294 | 24.0 | NaN | S |
295 | NaN | NaN | C |
296 | 23.5 | NaN | C |
297 | 2.0 | C22 C26 | S |
298 | NaN | C106 | S |
299 | 50.0 | B58 B60 | C |
300 | NaN | NaN | Q |
301 | NaN | NaN | Q |
302 | 19.0 | NaN | S |
303 | NaN | E101 | Q |
304 | NaN | NaN | S |
305 | 0.92 | C22 C26 | S |
306 | NaN | NaN | C |
307 | 17.0 | C65 | C |
308 | 30.0 | NaN | C |
309 | 30.0 | E36 | C |
310 | 24.0 | C54 | C |
311 | 18.0 | B57 B59 B63 B66 | C |
312 | 26.0 | NaN | S |
313 | 28.0 | NaN | S |
314 | 43.0 | NaN | S |
315 | 26.0 | NaN | S |
316 | 24.0 | NaN | S |
317 | 54.0 | NaN | S |
318 | 31.0 | C7 | S |
319 | 40.0 | E34 | C |
320 | 22.0 | NaN | S |
321 | 27.0 | NaN | S |
322 | 30.0 | NaN | Q |
323 | 22.0 | NaN | S |
324 | NaN | NaN | S |
325 | 36.0 | C32 | C |
326 | 61.0 | NaN | S |
327 | 36.0 | D | S |
328 | 31.0 | NaN | S |
329 | 16.0 | B18 | C |
330 | NaN | NaN | Q |
331 | 45.5 | C124 | S |
332 | 38.0 | C91 | S |
333 | 16.0 | NaN | S |
334 | NaN | NaN | S |
335 | NaN | NaN | S |
336 | 29.0 | C2 | S |
337 | 41.0 | E40 | C |
338 | 45.0 | NaN | S |
339 | 45.0 | T | S |
340 | 2.0 | F2 | S |
341 | 24.0 | C23 C25 C27 | S |
342 | 28.0 | NaN | S |
343 | 25.0 | NaN | S |
344 | 36.0 | NaN | S |
345 | 24.0 | F33 | S |
346 | 40.0 | NaN | S |
347 | NaN | NaN | S |
348 | 3.0 | NaN | S |
349 | 42.0 | NaN | S |
350 | 23.0 | NaN | S |
351 | NaN | C128 | S |
352 | 15.0 | NaN | C |
353 | 25.0 | NaN | S |
354 | NaN | NaN | C |
355 | 28.0 | NaN | S |
356 | 22.0 | E33 | S |
357 | 38.0 | NaN | S |
358 | NaN | NaN | Q |
359 | NaN | NaN | Q |
360 | 40.0 | NaN | S |
361 | 29.0 | NaN | C |
362 | 45.0 | NaN | C |
363 | 35.0 | NaN | S |
364 | NaN | NaN | Q |
365 | 30.0 | NaN | S |
366 | 60.0 | D37 | C |
367 | NaN | NaN | C |
368 | NaN | NaN | Q |
369 | 24.0 | B35 | C |
370 | 25.0 | E50 | C |
371 | 18.0 | NaN | S |
372 | 19.0 | NaN | S |
373 | 22.0 | NaN | C |
374 | 3.0 | NaN | S |
375 | NaN | NaN | C |
376 | 22.0 | NaN | S |
377 | 27.0 | C82 | C |
378 | 20.0 | NaN | C |
379 | 19.0 | NaN | S |
380 | 42.0 | NaN | C |
381 | 1.0 | NaN | C |
382 | 32.0 | NaN | S |
383 | 35.0 | NaN | S |
384 | NaN | NaN | S |
385 | 18.0 | NaN | S |
386 | 1.0 | NaN | S |
387 | 36.0 | NaN | S |
388 | NaN | NaN | Q |
389 | 17.0 | NaN | C |
390 | 36.0 | B96 B98 | S |
391 | 21.0 | NaN | S |
392 | 28.0 | NaN | S |
393 | 23.0 | D36 | C |
394 | 24.0 | G6 | S |
395 | 22.0 | NaN | S |
396 | 31.0 | NaN | S |
397 | 46.0 | NaN | S |
398 | 23.0 | NaN | S |
399 | 28.0 | NaN | S |
400 | 39.0 | NaN | S |
401 | 26.0 | NaN | S |
402 | 21.0 | NaN | S |
403 | 28.0 | NaN | S |
404 | 20.0 | NaN | S |
405 | 34.0 | NaN | S |
406 | 51.0 | NaN | S |
407 | 3.0 | NaN | S |
408 | 21.0 | NaN | S |
409 | NaN | NaN | S |
410 | NaN | NaN | S |
411 | NaN | NaN | Q |
412 | 33.0 | C78 | Q |
413 | NaN | NaN | S |
414 | 44.0 | NaN | S |
415 | NaN | NaN | S |
416 | 34.0 | NaN | S |
417 | 18.0 | NaN | S |
418 | 30.0 | NaN | S |
419 | 10.0 | NaN | S |
420 | NaN | NaN | C |
421 | 21.0 | NaN | Q |
422 | 29.0 | NaN | S |
423 | 28.0 | NaN | S |
424 | 18.0 | NaN | S |
425 | NaN | NaN | S |
426 | 28.0 | NaN | S |
427 | 19.0 | NaN | S |
428 | NaN | NaN | Q |
429 | 32.0 | E10 | S |
430 | 28.0 | C52 | S |
431 | NaN | NaN | S |
432 | 42.0 | NaN | S |
433 | 17.0 | NaN | S |
434 | 50.0 | E44 | S |
435 | 14.0 | B96 B98 | S |
436 | 21.0 | NaN | S |
437 | 24.0 | NaN | S |
438 | 64.0 | C23 C25 C27 | S |
439 | 31.0 | NaN | S |
440 | 45.0 | NaN | S |
441 | 20.0 | NaN | S |
442 | 25.0 | NaN | S |
443 | 28.0 | NaN | S |
444 | NaN | NaN | S |
445 | 4.0 | A34 | S |
446 | 13.0 | NaN | S |
447 | 34.0 | NaN | S |
448 | 5.0 | NaN | C |
449 | 52.0 | C104 | S |
450 | 36.0 | NaN | S |
451 | NaN | NaN | S |
452 | 30.0 | C111 | C |
453 | 49.0 | C92 | C |
454 | NaN | NaN | S |
455 | 29.0 | NaN | C |
456 | 65.0 | E38 | S |
457 | NaN | D21 | S |
458 | 50.0 | NaN | S |
459 | NaN | NaN | Q |
460 | 48.0 | E12 | S |
461 | 34.0 | NaN | S |
462 | 47.0 | E63 | S |
463 | 48.0 | NaN | S |
464 | NaN | NaN | S |
465 | 38.0 | NaN | S |
466 | NaN | NaN | S |
467 | 56.0 | NaN | S |
468 | NaN | NaN | Q |
469 | 0.75 | NaN | C |
470 | NaN | NaN | S |
471 | 38.0 | NaN | S |
472 | 33.0 | NaN | S |
473 | 23.0 | D | C |
474 | 22.0 | NaN | S |
475 | NaN | A14 | S |
476 | 34.0 | NaN | S |
477 | 29.0 | NaN | S |
478 | 22.0 | NaN | S |
479 | 2.0 | NaN | S |
480 | 9.0 | NaN | S |
481 | NaN | NaN | S |
482 | 50.0 | NaN | S |
483 | 63.0 | NaN | S |
484 | 25.0 | B49 | C |
485 | NaN | NaN | S |
486 | 35.0 | C93 | S |
487 | 58.0 | B37 | C |
488 | 30.0 | NaN | S |
489 | 9.0 | NaN | S |
490 | NaN | NaN | S |
491 | 21.0 | NaN | S |
492 | 55.0 | C30 | S |
493 | 71.0 | NaN | C |
494 | 21.0 | NaN | S |
495 | NaN | NaN | C |
496 | 54.0 | D20 | C |
497 | NaN | NaN | S |
498 | 25.0 | C22 C26 | S |
499 | 24.0 | NaN | S |
500 | 17.0 | NaN | S |
501 | 21.0 | NaN | Q |
502 | NaN | NaN | Q |
503 | 37.0 | NaN | S |
504 | 16.0 | B79 | S |
505 | 18.0 | C65 | C |
506 | 33.0 | NaN | S |
507 | NaN | NaN | S |
508 | 28.0 | NaN | S |
509 | 26.0 | NaN | S |
510 | 29.0 | NaN | Q |
511 | NaN | NaN | S |
512 | 36.0 | E25 | S |
513 | 54.0 | NaN | C |
514 | 24.0 | NaN | S |
515 | 47.0 | D46 | S |
516 | 34.0 | F33 | S |
517 | NaN | NaN | Q |
518 | 36.0 | NaN | S |
519 | 32.0 | NaN | S |
520 | 30.0 | B73 | S |
521 | 22.0 | NaN | S |
522 | NaN | NaN | C |
523 | 44.0 | B18 | C |
524 | NaN | NaN | C |
525 | 40.5 | NaN | Q |
526 | 50.0 | NaN | S |
527 | NaN | C95 | S |
528 | 39.0 | NaN | S |
529 | 23.0 | NaN | S |
530 | 2.0 | NaN | S |
531 | NaN | NaN | C |
532 | 17.0 | NaN | C |
533 | NaN | NaN | C |
534 | 30.0 | NaN | S |
535 | 7.0 | NaN | S |
536 | 45.0 | B38 | S |
537 | 30.0 | NaN | C |
538 | NaN | NaN | S |
539 | 22.0 | B39 | C |
540 | 36.0 | B22 | S |
541 | 9.0 | NaN | S |
542 | 11.0 | NaN | S |
543 | 32.0 | NaN | S |
544 | 50.0 | C86 | C |
545 | 64.0 | NaN | S |
546 | 19.0 | NaN | S |
547 | NaN | NaN | C |
548 | 33.0 | NaN | S |
549 | 8.0 | NaN | S |
550 | 17.0 | C70 | C |
551 | 27.0 | NaN | S |
552 | NaN | NaN | Q |
553 | 22.0 | NaN | C |
554 | 22.0 | NaN | S |
555 | 62.0 | NaN | S |
556 | 48.0 | A16 | C |
557 | NaN | NaN | C |
558 | 39.0 | E67 | S |
559 | 36.0 | NaN | S |
560 | NaN | NaN | Q |
561 | 40.0 | NaN | S |
562 | 28.0 | NaN | S |
563 | NaN | NaN | S |
564 | NaN | NaN | S |
565 | 24.0 | NaN | S |
566 | 19.0 | NaN | S |
567 | 29.0 | NaN | S |
568 | NaN | NaN | C |
569 | 32.0 | NaN | S |
570 | 62.0 | NaN | S |
571 | 53.0 | C101 | S |
572 | 36.0 | E25 | S |
573 | NaN | NaN | Q |
574 | 16.0 | NaN | S |
575 | 19.0 | NaN | S |
576 | 34.0 | NaN | S |
577 | 39.0 | E44 | S |
578 | NaN | NaN | C |
579 | 32.0 | NaN | S |
580 | 25.0 | NaN | S |
581 | 39.0 | C68 | C |
582 | 54.0 | NaN | S |
583 | 36.0 | A10 | C |
584 | NaN | NaN | C |
585 | 18.0 | E68 | S |
586 | 47.0 | NaN | S |
587 | 60.0 | B41 | C |
588 | 22.0 | NaN | S |
589 | NaN | NaN | S |
590 | 35.0 | NaN | S |
591 | 52.0 | D20 | C |
592 | 47.0 | NaN | S |
593 | NaN | NaN | Q |
594 | 37.0 | NaN | S |
595 | 36.0 | NaN | S |
596 | NaN | NaN | S |
597 | 49.0 | NaN | S |
598 | NaN | NaN | C |
599 | 49.0 | A20 | C |
600 | 24.0 | NaN | S |
601 | NaN | NaN | S |
602 | NaN | NaN | S |
603 | 44.0 | NaN | S |
604 | 35.0 | NaN | C |
605 | 36.0 | NaN | S |
606 | 30.0 | NaN | S |
607 | 27.0 | NaN | S |
608 | 22.0 | NaN | C |
609 | 40.0 | C125 | S |
610 | 39.0 | NaN | S |
611 | NaN | NaN | S |
612 | NaN | NaN | Q |
613 | NaN | NaN | Q |
614 | 35.0 | NaN | S |
615 | 24.0 | NaN | S |
616 | 34.0 | NaN | S |
617 | 26.0 | NaN | S |
618 | 4.0 | F4 | S |
619 | 26.0 | NaN | S |
620 | 27.0 | NaN | C |
621 | 42.0 | D19 | S |
622 | 20.0 | NaN | C |
623 | 21.0 | NaN | S |
624 | 21.0 | NaN | S |
625 | 61.0 | D50 | S |
626 | 57.0 | NaN | Q |
627 | 21.0 | D9 | S |
628 | 26.0 | NaN | S |
629 | NaN | NaN | Q |
630 | 80.0 | A23 | S |
631 | 51.0 | NaN | S |
632 | 32.0 | B50 | C |
633 | NaN | NaN | S |
634 | 9.0 | NaN | S |
635 | 28.0 | NaN | S |
636 | 32.0 | NaN | S |
637 | 31.0 | NaN | S |
638 | 41.0 | NaN | S |
639 | NaN | NaN | S |
640 | 20.0 | NaN | S |
641 | 24.0 | B35 | C |
642 | 2.0 | NaN | S |
643 | NaN | NaN | S |
644 | 0.75 | NaN | C |
645 | 48.0 | D33 | C |
646 | 19.0 | NaN | S |
647 | 56.0 | A26 | C |
648 | NaN | NaN | S |
649 | 23.0 | NaN | S |
650 | NaN | NaN | S |
651 | 18.0 | NaN | S |
652 | 21.0 | NaN | S |
653 | NaN | NaN | Q |
654 | 18.0 | NaN | Q |
655 | 24.0 | NaN | S |
656 | NaN | NaN | S |
657 | 32.0 | NaN | Q |
658 | 23.0 | NaN | S |
659 | 58.0 | D48 | C |
660 | 50.0 | NaN | S |
661 | 40.0 | NaN | C |
662 | 47.0 | E58 | S |
663 | 36.0 | NaN | S |
664 | 20.0 | NaN | S |
665 | 32.0 | NaN | S |
666 | 25.0 | NaN | S |
667 | NaN | NaN | S |
668 | 43.0 | NaN | S |
669 | NaN | C126 | S |
670 | 40.0 | NaN | S |
671 | 31.0 | B71 | S |
672 | 70.0 | NaN | S |
673 | 31.0 | NaN | S |
674 | NaN | NaN | S |
675 | 18.0 | NaN | S |
676 | 24.5 | NaN | S |
677 | 18.0 | NaN | S |
678 | 43.0 | NaN | S |
679 | 36.0 | B51 B53 B55 | C |
680 | NaN | NaN | Q |
681 | 27.0 | D49 | C |
682 | 20.0 | NaN | S |
683 | 14.0 | NaN | S |
684 | 60.0 | NaN | S |
685 | 25.0 | NaN | C |
686 | 14.0 | NaN | S |
687 | 19.0 | NaN | S |
688 | 18.0 | NaN | S |
689 | 15.0 | B5 | S |
690 | 31.0 | B20 | S |
691 | 4.0 | NaN | C |
692 | NaN | NaN | S |
693 | 25.0 | NaN | C |
694 | 60.0 | NaN | S |
695 | 52.0 | NaN | S |
696 | 44.0 | NaN | S |
697 | NaN | NaN | Q |
698 | 49.0 | C68 | C |
699 | 42.0 | F G63 | S |
700 | 18.0 | C62 C64 | C |
701 | 35.0 | E24 | S |
702 | 18.0 | NaN | C |
703 | 25.0 | NaN | Q |
704 | 26.0 | NaN | S |
705 | 39.0 | NaN | S |
706 | 45.0 | NaN | S |
707 | 42.0 | E24 | S |
708 | 22.0 | NaN | S |
709 | NaN | NaN | C |
710 | 24.0 | C90 | C |
711 | NaN | C124 | S |
712 | 48.0 | C126 | S |
713 | 29.0 | NaN | S |
714 | 52.0 | NaN | S |
715 | 19.0 | F G73 | S |
716 | 38.0 | C45 | C |
717 | 27.0 | E101 | S |
718 | NaN | NaN | Q |
719 | 33.0 | NaN | S |
720 | 6.0 | NaN | S |
721 | 17.0 | NaN | S |
722 | 34.0 | NaN | S |
723 | 50.0 | NaN | S |
724 | 27.0 | E8 | S |
725 | 20.0 | NaN | S |
726 | 30.0 | NaN | S |
727 | NaN | NaN | Q |
728 | 25.0 | NaN | S |
729 | 25.0 | NaN | S |
730 | 29.0 | B5 | S |
731 | 11.0 | NaN | C |
732 | NaN | NaN | S |
733 | 23.0 | NaN | S |
734 | 23.0 | NaN | S |
735 | 28.5 | NaN | S |
736 | 48.0 | NaN | S |
737 | 35.0 | B101 | C |
738 | NaN | NaN | S |
739 | NaN | NaN | S |
740 | NaN | D45 | S |
741 | 36.0 | C46 | S |
742 | 21.0 | B57 B59 B63 B66 | C |
743 | 24.0 | NaN | S |
744 | 31.0 | NaN | S |
745 | 70.0 | B22 | S |
746 | 16.0 | NaN | S |
747 | 30.0 | NaN | S |
748 | 19.0 | D30 | S |
749 | 31.0 | NaN | Q |
750 | 4.0 | NaN | S |
751 | 6.0 | E121 | S |
752 | 33.0 | NaN | S |
753 | 23.0 | NaN | S |
754 | 48.0 | NaN | S |
755 | 0.67 | NaN | S |
756 | 28.0 | NaN | S |
757 | 18.0 | NaN | S |
758 | 34.0 | NaN | S |
759 | 33.0 | B77 | S |
760 | NaN | NaN | S |
761 | 41.0 | NaN | S |
762 | 20.0 | NaN | C |
763 | 36.0 | B96 B98 | S |
764 | 16.0 | NaN | S |
765 | 51.0 | D11 | S |
766 | NaN | NaN | C |
767 | 30.5 | NaN | Q |
768 | NaN | NaN | Q |
769 | 32.0 | NaN | S |
770 | 24.0 | NaN | S |
771 | 48.0 | NaN | S |
772 | 57.0 | E77 | S |
773 | NaN | NaN | C |
774 | 54.0 | NaN | S |
775 | 18.0 | NaN | S |
776 | NaN | F38 | Q |
777 | 5.0 | NaN | S |
778 | NaN | NaN | Q |
779 | 43.0 | B3 | S |
780 | 13.0 | NaN | C |
781 | 17.0 | B20 | S |
782 | 29.0 | D6 | S |
783 | NaN | NaN | S |
784 | 25.0 | NaN | S |
785 | 25.0 | NaN | S |
786 | 18.0 | NaN | S |
787 | 8.0 | NaN | Q |
788 | 1.0 | NaN | S |
789 | 46.0 | B82 B84 | C |
790 | NaN | NaN | Q |
791 | 16.0 | NaN | S |
792 | NaN | NaN | S |
793 | NaN | NaN | C |
794 | 25.0 | NaN | S |
795 | 39.0 | NaN | S |
796 | 49.0 | D17 | S |
797 | 31.0 | NaN | S |
798 | 30.0 | NaN | C |
799 | 30.0 | NaN | S |
800 | 34.0 | NaN | S |
801 | 31.0 | NaN | S |
802 | 11.0 | B96 B98 | S |
803 | 0.42 | NaN | C |
804 | 27.0 | NaN | S |
805 | 31.0 | NaN | S |
806 | 39.0 | A36 | S |
807 | 18.0 | NaN | S |
808 | 39.0 | NaN | S |
809 | 33.0 | E8 | S |
810 | 26.0 | NaN | S |
811 | 39.0 | NaN | S |
812 | 35.0 | NaN | S |
813 | 6.0 | NaN | S |
814 | 30.5 | NaN | S |
815 | NaN | B102 | S |
816 | 23.0 | NaN | S |
817 | 31.0 | NaN | C |
818 | 43.0 | NaN | S |
819 | 10.0 | NaN | S |
820 | 52.0 | B69 | S |
821 | 27.0 | NaN | S |
822 | 38.0 | NaN | S |
823 | 27.0 | E121 | S |
824 | 2.0 | NaN | S |
825 | NaN | NaN | Q |
826 | NaN | NaN | S |
827 | 1.0 | NaN | C |
828 | NaN | NaN | Q |
829 | 62.0 | B28 | NaN |
830 | 15.0 | NaN | C |
831 | 0.83 | NaN | S |
832 | NaN | NaN | C |
833 | 23.0 | NaN | S |
834 | 18.0 | NaN | S |
835 | 39.0 | E49 | C |
836 | 21.0 | NaN | S |
837 | NaN | NaN | S |
838 | 32.0 | NaN | S |
839 | NaN | C47 | C |
840 | 20.0 | NaN | S |
841 | 16.0 | NaN | S |
842 | 30.0 | NaN | C |
843 | 34.5 | NaN | C |
844 | 17.0 | NaN | S |
845 | 42.0 | NaN | S |
846 | NaN | NaN | S |
847 | 35.0 | NaN | C |
848 | 28.0 | NaN | S |
849 | NaN | C92 | C |
850 | 4.0 | NaN | S |
851 | 74.0 | NaN | S |
852 | 9.0 | NaN | C |
853 | 16.0 | D28 | S |
854 | 44.0 | NaN | S |
855 | 18.0 | NaN | S |
856 | 45.0 | NaN | S |
857 | 51.0 | E17 | S |
858 | 24.0 | NaN | C |
859 | NaN | NaN | C |
860 | 41.0 | NaN | S |
861 | 21.0 | NaN | S |
862 | 48.0 | D17 | S |
863 | NaN | NaN | S |
864 | 24.0 | NaN | S |
865 | 42.0 | NaN | S |
866 | 27.0 | NaN | C |
867 | 31.0 | A24 | S |
868 | NaN | NaN | S |
869 | 4.0 | NaN | S |
870 | 26.0 | NaN | S |
871 | 47.0 | D35 | S |
872 | 33.0 | B51 B53 B55 | S |
873 | 47.0 | NaN | S |
874 | 28.0 | NaN | C |
875 | 15.0 | NaN | C |
876 | 20.0 | NaN | S |
877 | 19.0 | NaN | S |
878 | NaN | NaN | S |
879 | 56.0 | C50 | C |
880 | 25.0 | NaN | S |
881 | 33.0 | NaN | S |
882 | 22.0 | NaN | S |
883 | 28.0 | NaN | S |
884 | 25.0 | NaN | S |
885 | 39.0 | NaN | Q |
886 | 27.0 | NaN | S |
887 | 19.0 | B42 | S |
888 | NaN | NaN | S |
889 | 26.0 | C148 | C |
890 | 32.0 | NaN | Q |
891 rows × 3 columns
Removing missing values
The dropna() function allows dropping Rows/Columns with missing NaN values. The axis=0 means that we delete all rows in which cells contain NaN. Since we use inplace=True, the dataframe will be modified after removing the rows.
# Removing all rows with NaN
titanic_df.dropna(axis=0, how='any', inplace=True)
# The size of the resulting dataset
titanic_df.shape
(183, 12)
Accessing Data
The bracket-based indexing operator
The bracket-based indexing operator helps us to extract specific columns from a dataframe.
# Get the only columns "Name", "Sex", "Age" of the first five rows
titanic_df[["Name", "Sex", "Age"]][:4]
index | Name | Sex | Age |
---|---|---|---|
1 | Cumings, Mrs. John Bradley (Florence Briggs Thayer) | NaN | 38.0 |
3 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | NaN | 35.0 |
6 | McCarthy, Mr. Timothy J | NaN | 54.0 |
10 | Sandstrom, Miss. Marguerite Rut | NaN | 4.0 |
Accessing data by the key
We use the iloc() function to access the first five rows in our dataframe.
titanic_df.iloc[:5]
index | PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | Age_squared |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Thayer) | NaN | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C | 1444.0 |
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | NaN | 35.0 | 1 | 0 | 113803 | 53.1 | C123 | S | 1225.0 |
6 | 7 | 0 | 1 | McCarthy, Mr. Timothy J | NaN | 54.0 | 0 | 0 | 17463 | 51.8625 | E46 | S | 2916.0 |
10 | 11 | 1 | 3 | Sandstrom, Miss. Marguerite Rut | NaN | 4.0 | 1 | 1 | PP 9549 | 16.7 | G6 | S | 16.0 |
11 | 12 | 1 | 1 | Bonnell, Miss. Elizabeth | NaN | 58.0 | 0 | 0 | 113783 | 26.55 | C103 | S | 3364.0 |
Integer-location-based indexing
To find out the rows of the most senior passenger or a passenger who paid the highest fare in the dataset, we can use the integer-location-based indexing and the argmax() function.
# The most senior passenger
titanic_df.iloc[[titanic_df['Age'].argmax()]]
index | PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | Age_squared |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
630 | 631 | 1 | 1 | Barkworth, Mr. Algernon Henry Wilson | NaN | 80.0 | 0 | 0 | 27042 | 30.0 | A23 | S | 6400.0 |
# Paid the highest fair
titanic_df.iloc[[titanic_df['Fare'].argmax()]]
index | PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | Age_squared |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
679 | 680 | 1 | 1 | Cardeza, Mr. Thomas Drake Martinez | NaN | 36.0 | 0 | 1 | PC 17755 | 512.3292 | B51 B53 B55 | C | 1296.0 |
Working with columns
To access a specific column, you can use the square brackets notation:
titanic_df['Age']
1 38.0 3 35.0 6 54.0 10 4.0 11 58.0 ... 871 47.0 872 33.0 879 56.0 887 19.0 889 26.0 Name: Age, Length: 183, dtype: float64
This will return the ‘Age’ column as a Pandas Series.
To select multiple columns, you can pass a list of column names:
titanic_df[['Age', 'Fare']]
index | Age | Fare |
---|---|---|
1 | 38.0 | 71.2833 |
3 | 35.0 | 53.1 |
6 | 54.0 | 51.8625 |
10 | 4.0 | 16.7 |
11 | 58.0 | 26.55 |
21 | 34.0 | 13.0 |
23 | 28.0 | 35.5 |
27 | 19.0 | 263.0 |
52 | 49.0 | 76.7292 |
54 | 65.0 | 61.9792 |
62 | 45.0 | 83.475 |
66 | 29.0 | 10.5 |
75 | 25.0 | 7.65 |
88 | 23.0 | 263.0 |
92 | 46.0 | 61.175 |
96 | 71.0 | 34.6542 |
97 | 23.0 | 63.3583 |
102 | 21.0 | 77.2875 |
110 | 47.0 | 52.0 |
118 | 24.0 | 247.5208 |
123 | 32.5 | 13.0 |
124 | 54.0 | 77.2875 |
136 | 19.0 | 26.2833 |
137 | 37.0 | 53.1 |
139 | 24.0 | 79.2 |
148 | 36.5 | 26.0 |
151 | 22.0 | 66.6 |
170 | 61.0 | 33.5 |
174 | 56.0 | 30.6958 |
177 | 50.0 | 28.7125 |
183 | 1.0 | 39.0 |
193 | 3.0 | 26.0 |
194 | 44.0 | 27.7208 |
195 | 58.0 | 146.5208 |
205 | 2.0 | 10.4625 |
209 | 40.0 | 31.0 |
215 | 31.0 | 113.275 |
218 | 32.0 | 76.2917 |
224 | 38.0 | 90.0 |
230 | 35.0 | 83.475 |
245 | 44.0 | 90.0 |
248 | 37.0 | 52.5542 |
251 | 29.0 | 10.4625 |
252 | 62.0 | 26.55 |
257 | 30.0 | 86.5 |
262 | 52.0 | 79.65 |
263 | 40.0 | 0.0 |
268 | 58.0 | 153.4625 |
269 | 35.0 | 135.6333 |
273 | 37.0 | 29.7 |
275 | 63.0 | 77.9583 |
291 | 19.0 | 91.0792 |
292 | 36.0 | 12.875 |
297 | 2.0 | 151.55 |
299 | 50.0 | 247.5208 |
305 | 0.92 | 151.55 |
307 | 17.0 | 108.9 |
309 | 30.0 | 56.9292 |
310 | 24.0 | 83.1583 |
311 | 18.0 | 262.375 |
318 | 31.0 | 164.8667 |
319 | 40.0 | 134.5 |
325 | 36.0 | 135.6333 |
327 | 36.0 | 13.0 |
329 | 16.0 | 57.9792 |
331 | 45.5 | 28.5 |
332 | 38.0 | 153.4625 |
336 | 29.0 | 66.6 |
337 | 41.0 | 134.5 |
339 | 45.0 | 35.5 |
340 | 2.0 | 26.0 |
341 | 24.0 | 263.0 |
345 | 24.0 | 13.0 |
356 | 22.0 | 55.0 |
366 | 60.0 | 75.25 |
369 | 24.0 | 69.3 |
370 | 25.0 | 55.4417 |
377 | 27.0 | 211.5 |
390 | 36.0 | 120.0 |
393 | 23.0 | 113.275 |
394 | 24.0 | 16.7 |
412 | 33.0 | 90.0 |
429 | 32.0 | 8.05 |
430 | 28.0 | 26.55 |
434 | 50.0 | 55.9 |
435 | 14.0 | 120.0 |
438 | 64.0 | 263.0 |
445 | 4.0 | 81.8583 |
449 | 52.0 | 30.5 |
452 | 30.0 | 27.75 |
453 | 49.0 | 89.1042 |
456 | 65.0 | 26.55 |
460 | 48.0 | 26.55 |
462 | 47.0 | 38.5 |
473 | 23.0 | 13.7917 |
484 | 25.0 | 91.0792 |
486 | 35.0 | 90.0 |
487 | 58.0 | 29.7 |
492 | 55.0 | 30.5 |
496 | 54.0 | 78.2667 |
498 | 25.0 | 151.55 |
504 | 16.0 | 86.5 |
505 | 18.0 | 108.9 |
512 | 36.0 | 26.2875 |
515 | 47.0 | 34.0208 |
516 | 34.0 | 10.5 |
520 | 30.0 | 93.5 |
523 | 44.0 | 57.9792 |
536 | 45.0 | 26.55 |
539 | 22.0 | 49.5 |
540 | 36.0 | 71.0 |
544 | 50.0 | 106.425 |
550 | 17.0 | 110.8833 |
556 | 48.0 | 39.6 |
558 | 39.0 | 79.65 |
571 | 53.0 | 51.4792 |
572 | 36.0 | 26.3875 |
577 | 39.0 | 55.9 |
581 | 39.0 | 110.8833 |
583 | 36.0 | 40.125 |
585 | 18.0 | 79.65 |
587 | 60.0 | 79.2 |
591 | 52.0 | 78.2667 |
599 | 49.0 | 56.9292 |
609 | 40.0 | 153.4625 |
618 | 4.0 | 39.0 |
621 | 42.0 | 52.5542 |
625 | 61.0 | 32.3208 |
627 | 21.0 | 77.9583 |
630 | 80.0 | 30.0 |
632 | 32.0 | 30.5 |
641 | 24.0 | 69.3 |
645 | 48.0 | 76.7292 |
647 | 56.0 | 35.5 |
659 | 58.0 | 113.275 |
662 | 47.0 | 25.5875 |
671 | 31.0 | 52.0 |
679 | 36.0 | 512.3292 |
681 | 27.0 | 76.7292 |
689 | 15.0 | 211.3375 |
690 | 31.0 | 57.0 |
698 | 49.0 | 110.8833 |
699 | 42.0 | 7.65 |
700 | 18.0 | 227.525 |
701 | 35.0 | 26.2875 |
707 | 42.0 | 26.2875 |
710 | 24.0 | 49.5042 |
712 | 48.0 | 52.0 |
715 | 19.0 | 7.65 |
716 | 38.0 | 227.525 |
717 | 27.0 | 10.5 |
724 | 27.0 | 53.1 |
730 | 29.0 | 211.3375 |
737 | 35.0 | 512.3292 |
741 | 36.0 | 78.85 |
742 | 21.0 | 262.375 |
745 | 70.0 | 71.0 |
748 | 19.0 | 53.1 |
751 | 6.0 | 12.475 |
759 | 33.0 | 86.5 |
763 | 36.0 | 120.0 |
765 | 51.0 | 77.9583 |
772 | 57.0 | 10.5 |
779 | 43.0 | 211.3375 |
781 | 17.0 | 57.0 |
782 | 29.0 | 30.0 |
789 | 46.0 | 79.2 |
796 | 49.0 | 25.9292 |
802 | 11.0 | 120.0 |
806 | 39.0 | 0.0 |
809 | 33.0 | 53.1 |
820 | 52.0 | 93.5 |
823 | 27.0 | 12.475 |
835 | 39.0 | 83.1583 |
853 | 16.0 | 39.4 |
857 | 51.0 | 26.55 |
862 | 48.0 | 25.9292 |
867 | 31.0 | 50.4958 |
871 | 47.0 | 52.5542 |
872 | 33.0 | 5.0 |
879 | 56.0 | 83.1583 |
887 | 19.0 | 30.0 |
889 | 26.0 | 30.0 |
This will return a new DataFrame with only the ‘Age’ and ‘Fare’ columns.
Conditional filtering
The filter function selects rows from a DataFrame based on a boolean condition. In the example above, the filter function selects only the rows where the ‘Age’ column is not null (i.e., where the value is not missing).
# Use the filter function to select only the rows where 'Age' is not null
filtered_df = titanic_df[titanic_df['Age'].notnull()]
Boolean indexing
You can also use boolean indexing to filter rows based on a condition:
titanic_df[titanic_df['Age'] > 30]
index | PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Thayer) | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1 | C123 | S |
6 | 7 | 0 | 1 | McCarthy, Mr. Timothy J | male | 54.0 | 0 | 0 | 17463 | 51.8625 | E46 | S |
11 | 12 | 1 | 1 | Bonnell, Miss. Elizabeth | female | 58.0 | 0 | 0 | 113783 | 26.55 | C103 | S |
21 | 22 | 1 | 2 | Beesley, Mr. Lawrence | male | 34.0 | 0 | 0 | 248698 | 13.0 | D56 | S |
52 | 53 | 1 | 1 | Harper, Mrs. Henry Sleeper (Myna Haxtun) | female | 49.0 | 1 | 0 | PC 17572 | 76.7292 | D33 | C |
54 | 55 | 0 | 1 | Ostby, Mr. Engelhart Cornelius | male | 65.0 | 0 | 1 | 113509 | 61.9792 | B30 | C |
62 | 63 | 0 | 1 | Harris, Mr. Henry Birkhardt | male | 45.0 | 1 | 0 | 36973 | 83.475 | C83 | S |
92 | 93 | 0 | 1 | Chaffee, Mr. Herbert Fuller | male | 46.0 | 1 | 0 | W.E.P. 5734 | 61.175 | E31 | S |
96 | 97 | 0 | 1 | Goldschmidt, Mr. George B | male | 71.0 | 0 | 0 | PC 17754 | 34.6542 | A5 | C |
110 | 111 | 0 | 1 | Porter, Mr. Walter Chamberlain | male | 47.0 | 0 | 0 | 110465 | 52.0 | C110 | S |
123 | 124 | 1 | 2 | Webber, Miss. Susan | female | 32.5 | 0 | 0 | 27267 | 13.0 | E101 | S |
124 | 125 | 0 | 1 | White, Mr. Percival Wayland | male | 54.0 | 0 | 1 | 35281 | 77.2875 | D26 | S |
137 | 138 | 0 | 1 | Futrelle, Mr. Jacques Heath | male | 37.0 | 1 | 0 | 113803 | 53.1 | C123 | S |
148 | 149 | 0 | 2 | Navratil, Mr. Michel (“Louis M Hoffman”) | male | 36.5 | 0 | 2 | 230080 | 26.0 | F2 | S |
170 | 171 | 0 | 1 | Van der hoef, Mr. Wyckoff | male | 61.0 | 0 | 0 | 111240 | 33.5 | B19 | S |
174 | 175 | 0 | 1 | Smith, Mr. James Clinch | male | 56.0 | 0 | 0 | 17764 | 30.6958 | A7 | C |
177 | 178 | 0 | 1 | Isham, Miss. Ann Elizabeth | female | 50.0 | 0 | 0 | PC 17595 | 28.7125 | C49 | C |
194 | 195 | 1 | 1 | Brown, Mrs. James Joseph (Margaret Tobin) | female | 44.0 | 0 | 0 | PC 17610 | 27.7208 | B4 | C |
195 | 196 | 1 | 1 | Lurette, Miss. Elise | female | 58.0 | 0 | 0 | PC 17569 | 146.5208 | B80 | C |
209 | 210 | 1 | 1 | Blank, Mr. Henry | male | 40.0 | 0 | 0 | 112277 | 31.0 | A31 | C |
215 | 216 | 1 | 1 | Newell, Miss. Madeleine | female | 31.0 | 1 | 0 | 35273 | 113.275 | D36 | C |
218 | 219 | 1 | 1 | Bazzani, Miss. Albina | female | 32.0 | 0 | 0 | 11813 | 76.2917 | D15 | C |
224 | 225 | 1 | 1 | Hoyt, Mr. Frederick Maxfield | male | 38.0 | 1 | 0 | 19943 | 90.0 | C93 | S |
230 | 231 | 1 | 1 | Harris, Mrs. Henry Birkhardt (Irene Wallach) | female | 35.0 | 1 | 0 | 36973 | 83.475 | C83 | S |
245 | 246 | 0 | 1 | Minahan, Dr. William Edward | male | 44.0 | 2 | 0 | 19928 | 90.0 | C78 | Q |
248 | 249 | 1 | 1 | Beckwith, Mr. Richard Leonard | male | 37.0 | 1 | 1 | 11751 | 52.5542 | D35 | S |
252 | 253 | 0 | 1 | Stead, Mr. William Thomas | male | 62.0 | 0 | 0 | 113514 | 26.55 | C87 | S |
262 | 263 | 0 | 1 | Taussig, Mr. Emil | male | 52.0 | 1 | 1 | 110413 | 79.65 | E67 | S |
263 | 264 | 0 | 1 | Harrison, Mr. William | male | 40.0 | 0 | 0 | 112059 | 0.0 | B94 | S |
268 | 269 | 1 | 1 | Graham, Mrs. William Thompson (Edith Junkins) | female | 58.0 | 0 | 1 | PC 17582 | 153.4625 | C125 | S |
269 | 270 | 1 | 1 | Bissette, Miss. Amelia | female | 35.0 | 0 | 0 | PC 17760 | 135.6333 | C99 | S |
273 | 274 | 0 | 1 | Natsch, Mr. Charles H | male | 37.0 | 0 | 1 | PC 17596 | 29.7 | C118 | C |
275 | 276 | 1 | 1 | Andrews, Miss. Kornelia Theodosia | female | 63.0 | 1 | 0 | 13502 | 77.9583 | D7 | S |
292 | 293 | 0 | 2 | Levy, Mr. Rene Jacques | male | 36.0 | 0 | 0 | SC/Paris 2163 | 12.875 | D | C |
299 | 300 | 1 | 1 | Baxter, Mrs. James (Helene DeLaudeniere Chaput) | female | 50.0 | 0 | 1 | PC 17558 | 247.5208 | B58 B60 | C |
318 | 319 | 1 | 1 | Wick, Miss. Mary Natalie | female | 31.0 | 0 | 2 | 36928 | 164.8667 | C7 | S |
319 | 320 | 1 | 1 | Spedden, Mrs. Frederic Oakley (Margaretta Corning Stone) | female | 40.0 | 1 | 1 | 16966 | 134.5 | E34 | C |
325 | 326 | 1 | 1 | Young, Miss. Marie Grice | female | 36.0 | 0 | 0 | PC 17760 | 135.6333 | C32 | C |
327 | 328 | 1 | 2 | Ball, Mrs. (Ada E Hall) | female | 36.0 | 0 | 0 | 28551 | 13.0 | D | S |
331 | 332 | 0 | 1 | Partner, Mr. Austen | male | 45.5 | 0 | 0 | 113043 | 28.5 | C124 | S |
332 | 333 | 0 | 1 | Graham, Mr. George Edward | male | 38.0 | 0 | 1 | PC 17582 | 153.4625 | C91 | S |
337 | 338 | 1 | 1 | Burns, Miss. Elizabeth Margaret | female | 41.0 | 0 | 0 | 16966 | 134.5 | E40 | C |
339 | 340 | 0 | 1 | Blackwell, Mr. Stephen Weart | male | 45.0 | 0 | 0 | 113784 | 35.5 | T | S |
366 | 367 | 1 | 1 | Warren, Mrs. Frank Manley (Anna Sophia Atkinson) | female | 60.0 | 1 | 0 | 110813 | 75.25 | D37 | C |
390 | 391 | 1 | 1 | Carter, Mr. William Ernest | male | 36.0 | 1 | 2 | 113760 | 120.0 | B96 B98 | S |
412 | 413 | 1 | 1 | Minahan, Miss. Daisy E | female | 33.0 | 1 | 0 | 19928 | 90.0 | C78 | Q |
429 | 430 | 1 | 3 | Pickard, Mr. Berk (Berk Trembisky) | male | 32.0 | 0 | 0 | SOTON/O.Q. 392078 | 8.05 | E10 | S |
434 | 435 | 0 | 1 | Silvey, Mr. William Baird | male | 50.0 | 1 | 0 | 13507 | 55.9 | E44 | S |
438 | 439 | 0 | 1 | Fortune, Mr. Mark | male | 64.0 | 1 | 4 | 19950 | 263.0 | C23 C25 C27 | S |
449 | 450 | 1 | 1 | Peuchen, Major. Arthur Godfrey | male | 52.0 | 0 | 0 | 113786 | 30.5 | C104 | S |
453 | 454 | 1 | 1 | Goldenberg, Mr. Samuel L | male | 49.0 | 1 | 0 | 17453 | 89.1042 | C92 | C |
456 | 457 | 0 | 1 | Millet, Mr. Francis Davis | male | 65.0 | 0 | 0 | 13509 | 26.55 | E38 | S |
460 | 461 | 1 | 1 | Anderson, Mr. Harry | male | 48.0 | 0 | 0 | 19952 | 26.55 | E12 | S |
462 | 463 | 0 | 1 | Gee, Mr. Arthur H | male | 47.0 | 0 | 0 | 111320 | 38.5 | E63 | S |
486 | 487 | 1 | 1 | Hoyt, Mrs. Frederick Maxfield (Jane Anne Forby) | female | 35.0 | 1 | 0 | 19943 | 90.0 | C93 | S |
487 | 488 | 0 | 1 | Kent, Mr. Edward Austin | male | 58.0 | 0 | 0 | 11771 | 29.7 | B37 | C |
492 | 493 | 0 | 1 | Molson, Mr. Harry Markland | male | 55.0 | 0 | 0 | 113787 | 30.5 | C30 | S |
496 | 497 | 1 | 1 | Eustis, Miss. Elizabeth Mussey | female | 54.0 | 1 | 0 | 36947 | 78.2667 | D20 | C |
512 | 513 | 1 | 1 | McGough, Mr. James Robert | male | 36.0 | 0 | 0 | PC 17473 | 26.2875 | E25 | S |
515 | 516 | 0 | 1 | Walker, Mr. William Anderson | male | 47.0 | 0 | 0 | 36967 | 34.0208 | D46 | S |
516 | 517 | 1 | 2 | Lemore, Mrs. (Amelia Milley) | female | 34.0 | 0 | 0 | C.A. 34260 | 10.5 | F33 | S |
523 | 524 | 1 | 1 | Hippach, Mrs. Louis Albert (Ida Sophia Fischer) | female | 44.0 | 0 | 1 | 111361 | 57.9792 | B18 | C |
536 | 537 | 0 | 1 | Butt, Major. Archibald Willingham | male | 45.0 | 0 | 0 | 113050 | 26.55 | B38 | S |
540 | 541 | 1 | 1 | Crosby, Miss. Harriet R | female | 36.0 | 0 | 2 | WE/P 5735 | 71.0 | B22 | S |
544 | 545 | 0 | 1 | Douglas, Mr. Walter Donald | male | 50.0 | 1 | 0 | PC 17761 | 106.425 | C86 | C |
556 | 557 | 1 | 1 | Duff Gordon, Lady. (Lucille Christiana Sutherland) (“Mrs Morgan”) | female | 48.0 | 1 | 0 | 11755 | 39.6 | A16 | C |
558 | 559 | 1 | 1 | Taussig, Mrs. Emil (Tillie Mandelbaum) | female | 39.0 | 1 | 1 | 110413 | 79.65 | E67 | S |
571 | 572 | 1 | 1 | Appleton, Mrs. Edward Dale (Charlotte Lamson) | female | 53.0 | 2 | 0 | 11769 | 51.4792 | C101 | S |
572 | 573 | 1 | 1 | Flynn, Mr. John Irwin (“Irving”) | male | 36.0 | 0 | 0 | PC 17474 | 26.3875 | E25 | S |
577 | 578 | 1 | 1 | Silvey, Mrs. William Baird (Alice Munger) | female | 39.0 | 1 | 0 | 13507 | 55.9 | E44 | S |
581 | 582 | 1 | 1 | Thayer, Mrs. John Borland (Marian Longstreth Morris) | female | 39.0 | 1 | 1 | 17421 | 110.8833 | C68 | C |
583 | 584 | 0 | 1 | Ross, Mr. John Hugo | male | 36.0 | 0 | 0 | 13049 | 40.125 | A10 | C |
587 | 588 | 1 | 1 | Frolicher-Stehli, Mr. Maxmillian | male | 60.0 | 1 | 1 | 13567 | 79.2 | B41 | C |
591 | 592 | 1 | 1 | Stephenson, Mrs. Walter Bertram (Martha Eustis) | female | 52.0 | 1 | 0 | 36947 | 78.2667 | D20 | C |
599 | 600 | 1 | 1 | Duff Gordon, Sir. Cosmo Edmund (“Mr Morgan”) | male | 49.0 | 1 | 0 | PC 17485 | 56.9292 | A20 | C |
609 | 610 | 1 | 1 | Shutes, Miss. Elizabeth W | female | 40.0 | 0 | 0 | PC 17582 | 153.4625 | C125 | S |
621 | 622 | 1 | 1 | Kimball, Mr. Edwin Nelson Jr | male | 42.0 | 1 | 0 | 11753 | 52.5542 | D19 | S |
625 | 626 | 0 | 1 | Sutton, Mr. Frederick | male | 61.0 | 0 | 0 | 36963 | 32.3208 | D50 | S |
630 | 631 | 1 | 1 | Barkworth, Mr. Algernon Henry Wilson | male | 80.0 | 0 | 0 | 27042 | 30.0 | A23 | S |
632 | 633 | 1 | 1 | Stahelin-Maeglin, Dr. Max | male | 32.0 | 0 | 0 | 13214 | 30.5 | B50 | C |
645 | 646 | 1 | 1 | Harper, Mr. Henry Sleeper | male | 48.0 | 1 | 0 | PC 17572 | 76.7292 | D33 | C |
647 | 648 | 1 | 1 | Simonius-Blumer, Col. Oberst Alfons | male | 56.0 | 0 | 0 | 13213 | 35.5 | A26 | C |
659 | 660 | 0 | 1 | Newell, Mr. Arthur Webster | male | 58.0 | 0 | 2 | 35273 | 113.275 | D48 | C |
662 | 663 | 0 | 1 | Colley, Mr. Edward Pomeroy | male | 47.0 | 0 | 0 | 5727 | 25.5875 | E58 | S |
671 | 672 | 0 | 1 | Davidson, Mr. Thornton | male | 31.0 | 1 | 0 | F.C. 12750 | 52.0 | B71 | S |
679 | 680 | 1 | 1 | Cardeza, Mr. Thomas Drake Martinez | male | 36.0 | 0 | 1 | PC 17755 | 512.3292 | B51 B53 B55 | C |
690 | 691 | 1 | 1 | Dick, Mr. Albert Adrian | male | 31.0 | 1 | 0 | 17474 | 57.0 | B20 | S |
698 | 699 | 0 | 1 | Thayer, Mr. John Borland | male | 49.0 | 1 | 1 | 17421 | 110.8833 | C68 | C |
699 | 700 | 0 | 3 | Humblen, Mr. Adolf Mathias Nicolai Olsen | male | 42.0 | 0 | 0 | 348121 | 7.65 | F G63 | S |
701 | 702 | 1 | 1 | Silverthorne, Mr. Spencer Victor | male | 35.0 | 0 | 0 | PC 17475 | 26.2875 | E24 | S |
707 | 708 | 1 | 1 | Calderhead, Mr. Edward Pennington | male | 42.0 | 0 | 0 | PC 17476 | 26.2875 | E24 | S |
712 | 713 | 1 | 1 | Taylor, Mr. Elmer Zebley | male | 48.0 | 1 | 0 | 19996 | 52.0 | C126 | S |
716 | 717 | 1 | 1 | Endres, Miss. Caroline Louise | female | 38.0 | 0 | 0 | PC 17757 | 227.525 | C45 | C |
737 | 738 | 1 | 1 | Lesurer, Mr. Gustave J | male | 35.0 | 0 | 0 | PC 17755 | 512.3292 | B101 | C |
741 | 742 | 0 | 1 | Cavendish, Mr. Tyrell William | male | 36.0 | 1 | 0 | 19877 | 78.85 | C46 | S |
745 | 746 | 0 | 1 | Crosby, Capt. Edward Gifford | male | 70.0 | 1 | 1 | WE/P 5735 | 71.0 | B22 | S |
759 | 760 | 1 | 1 | Rothes, the Countess. of (Lucy Noel Martha Dyer-Edwards) | female | 33.0 | 0 | 0 | 110152 | 86.5 | B77 | S |
763 | 764 | 1 | 1 | Carter, Mrs. William Ernest (Lucile Polk) | female | 36.0 | 1 | 2 | 113760 | 120.0 | B96 B98 | S |
765 | 766 | 1 | 1 | Hogeboom, Mrs. John C (Anna Andrews) | female | 51.0 | 1 | 0 | 13502 | 77.9583 | D11 | S |
772 | 773 | 0 | 2 | Mack, Mrs. (Mary) | female | 57.0 | 0 | 0 | S.O./P.P. 3 | 10.5 | E77 | S |
779 | 780 | 1 | 1 | Robert, Mrs. Edward Scott (Elisabeth Walton McMillan) | female | 43.0 | 0 | 1 | 24160 | 211.3375 | B3 | S |
789 | 790 | 0 | 1 | Guggenheim, Mr. Benjamin | male | 46.0 | 0 | 0 | PC 17593 | 79.2 | B82 B84 | C |
796 | 797 | 1 | 1 | Leader, Dr. Alice (Farnham) | female | 49.0 | 0 | 0 | 17465 | 25.9292 | D17 | S |
806 | 807 | 0 | 1 | Andrews, Mr. Thomas Jr | male | 39.0 | 0 | 0 | 112050 | 0.0 | A36 | S |
809 | 810 | 1 | 1 | Chambers, Mrs. Norman Campbell (Bertha Griggs) | female | 33.0 | 1 | 0 | 113806 | 53.1 | E8 | S |
820 | 821 | 1 | 1 | Hays, Mrs. Charles Melville (Clara Jennings Gregg) | female | 52.0 | 1 | 1 | 12749 | 93.5 | B69 | S |
835 | 836 | 1 | 1 | Compton, Miss. Sara Rebecca | female | 39.0 | 1 | 1 | PC 17756 | 83.1583 | E49 | C |
857 | 858 | 1 | 1 | Daly, Mr. Peter Denis | male | 51.0 | 0 | 0 | 113055 | 26.55 | E17 | S |
862 | 863 | 1 | 1 | Swift, Mrs. Frederick Joel (Margaret Welles Barron) | female | 48.0 | 0 | 0 | 17466 | 25.9292 | D17 | S |
867 | 868 | 0 | 1 | Roebling, Mr. Washington Augustus II | male | 31.0 | 0 | 0 | PC 17590 | 50.4958 | A24 | S |
871 | 872 | 1 | 1 | Beckwith, Mrs. Richard Leonard (Sallie Monypeny) | female | 47.0 | 1 | 1 | 11751 | 52.5542 | D35 | S |
872 | 873 | 0 | 1 | Carlsson, Mr. Frans Olof | male | 33.0 | 0 | 0 | 695 | 5.0 | B51 B53 B55 | S |
879 | 880 | 1 | 1 | Potter, Mrs. Thomas Jr (Lily Alexenia Wilson) | female | 56.0 | 0 | 1 | 11767 | 83.1583 | C50 | C |
This will return a new DataFrame with only the rows where the ‘Age’ column is greater than 30.
Modifying the data
Changing columns
To create a new column, you can use the dot notation:
titanic_df['Age_squared'] = titanic_df['Age'] ** 2
This will add a new column to the DataFrame called ‘Age_squared,’ the square of the ‘Age’ column.
titanic_df['Age_squared']
1 1444.0 3 1225.0 6 2916.0 10 16.0 11 3364.0 ... 871 2209.0 872 1089.0 879 3136.0 887 361.0 889 676.0 Name: Age_squared, Length: 183, dtype: float64
Dropping columns
To drop a column, you can use the drop method:
titanic_df.drop('Age_squared', axis=1)
This will return a new DataFrame with the ‘Age_squared’ column removed.
index | PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Thayer) | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1 | C123 | S |
6 | 7 | 0 | 1 | McCarthy, Mr. Timothy J | male | 54.0 | 0 | 0 | 17463 | 51.8625 | E46 | S |
10 | 11 | 1 | 3 | Sandstrom, Miss. Marguerite Rut | female | 4.0 | 1 | 1 | PP 9549 | 16.7 | G6 | S |
11 | 12 | 1 | 1 | Bonnell, Miss. Elizabeth | female | 58.0 | 0 | 0 | 113783 | 26.55 | C103 | S |
21 | 22 | 1 | 2 | Beesley, Mr. Lawrence | male | 34.0 | 0 | 0 | 248698 | 13.0 | D56 | S |
23 | 24 | 1 | 1 | Sloper, Mr. William Thompson | male | 28.0 | 0 | 0 | 113788 | 35.5 | A6 | S |
27 | 28 | 0 | 1 | Fortune, Mr. Charles Alexander | male | 19.0 | 3 | 2 | 19950 | 263.0 | C23 C25 C27 | S |
52 | 53 | 1 | 1 | Harper, Mrs. Henry Sleeper (Myna Haxtun) | female | 49.0 | 1 | 0 | PC 17572 | 76.7292 | D33 | C |
54 | 55 | 0 | 1 | Ostby, Mr. Engelhart Cornelius | male | 65.0 | 0 | 1 | 113509 | 61.9792 | B30 | C |
62 | 63 | 0 | 1 | Harris, Mr. Henry Birkhardt | male | 45.0 | 1 | 0 | 36973 | 83.475 | C83 | S |
66 | 67 | 1 | 2 | Nye, Mrs. (Elizabeth Ramell) | female | 29.0 | 0 | 0 | C.A. 29395 | 10.5 | F33 | S |
75 | 76 | 0 | 3 | Moen, Mr. Sigurd Hansen | male | 25.0 | 0 | 0 | 348123 | 7.65 | F G73 | S |
88 | 89 | 1 | 1 | Fortune, Miss. Mabel Helen | female | 23.0 | 3 | 2 | 19950 | 263.0 | C23 C25 C27 | S |
92 | 93 | 0 | 1 | Chaffee, Mr. Herbert Fuller | male | 46.0 | 1 | 0 | W.E.P. 5734 | 61.175 | E31 | S |
96 | 97 | 0 | 1 | Goldschmidt, Mr. George B | male | 71.0 | 0 | 0 | PC 17754 | 34.6542 | A5 | C |
97 | 98 | 1 | 1 | Greenfield, Mr. William Bertram | male | 23.0 | 0 | 1 | PC 17759 | 63.3583 | D10 D12 | C |
102 | 103 | 0 | 1 | White, Mr. Richard Frasar | male | 21.0 | 0 | 1 | 35281 | 77.2875 | D26 | S |
110 | 111 | 0 | 1 | Porter, Mr. Walter Chamberlain | male | 47.0 | 0 | 0 | 110465 | 52.0 | C110 | S |
118 | 119 | 0 | 1 | Baxter, Mr. Quigg Edmond | male | 24.0 | 0 | 1 | PC 17558 | 247.5208 | B58 B60 | C |
123 | 124 | 1 | 2 | Webber, Miss. Susan | female | 32.5 | 0 | 0 | 27267 | 13.0 | E101 | S |
124 | 125 | 0 | 1 | White, Mr. Percival Wayland | male | 54.0 | 0 | 1 | 35281 | 77.2875 | D26 | S |
136 | 137 | 1 | 1 | Newsom, Miss. Helen Monypeny | female | 19.0 | 0 | 2 | 11752 | 26.2833 | D47 | S |
137 | 138 | 0 | 1 | Futrelle, Mr. Jacques Heath | male | 37.0 | 1 | 0 | 113803 | 53.1 | C123 | S |
139 | 140 | 0 | 1 | Giglio, Mr. Victor | male | 24.0 | 0 | 0 | PC 17593 | 79.2 | B86 | C |
148 | 149 | 0 | 2 | Navratil, Mr. Michel (“Louis M Hoffman”) | male | 36.5 | 0 | 2 | 230080 | 26.0 | F2 | S |
151 | 152 | 1 | 1 | Pears, Mrs. Thomas (Edith Wearne) | female | 22.0 | 1 | 0 | 113776 | 66.6 | C2 | S |
170 | 171 | 0 | 1 | Van der hoef, Mr. Wyckoff | male | 61.0 | 0 | 0 | 111240 | 33.5 | B19 | S |
174 | 175 | 0 | 1 | Smith, Mr. James Clinch | male | 56.0 | 0 | 0 | 17764 | 30.6958 | A7 | C |
177 | 178 | 0 | 1 | Isham, Miss. Ann Elizabeth | female | 50.0 | 0 | 0 | PC 17595 | 28.7125 | C49 | C |
183 | 184 | 1 | 2 | Becker, Master. Richard F | male | 1.0 | 2 | 1 | 230136 | 39.0 | F4 | S |
193 | 194 | 1 | 2 | Navratil, Master. Michel M | male | 3.0 | 1 | 1 | 230080 | 26.0 | F2 | S |
194 | 195 | 1 | 1 | Brown, Mrs. James Joseph (Margaret Tobin) | female | 44.0 | 0 | 0 | PC 17610 | 27.7208 | B4 | C |
195 | 196 | 1 | 1 | Lurette, Miss. Elise | female | 58.0 | 0 | 0 | PC 17569 | 146.5208 | B80 | C |
205 | 206 | 0 | 3 | Strom, Miss. Telma Matilda | female | 2.0 | 0 | 1 | 347054 | 10.4625 | G6 | S |
209 | 210 | 1 | 1 | Blank, Mr. Henry | male | 40.0 | 0 | 0 | 112277 | 31.0 | A31 | C |
215 | 216 | 1 | 1 | Newell, Miss. Madeleine | female | 31.0 | 1 | 0 | 35273 | 113.275 | D36 | C |
218 | 219 | 1 | 1 | Bazzani, Miss. Albina | female | 32.0 | 0 | 0 | 11813 | 76.2917 | D15 | C |
224 | 225 | 1 | 1 | Hoyt, Mr. Frederick Maxfield | male | 38.0 | 1 | 0 | 19943 | 90.0 | C93 | S |
230 | 231 | 1 | 1 | Harris, Mrs. Henry Birkhardt (Irene Wallach) | female | 35.0 | 1 | 0 | 36973 | 83.475 | C83 | S |
245 | 246 | 0 | 1 | Minahan, Dr. William Edward | male | 44.0 | 2 | 0 | 19928 | 90.0 | C78 | Q |
248 | 249 | 1 | 1 | Beckwith, Mr. Richard Leonard | male | 37.0 | 1 | 1 | 11751 | 52.5542 | D35 | S |
251 | 252 | 0 | 3 | Strom, Mrs. Wilhelm (Elna Matilda Persson) | female | 29.0 | 1 | 1 | 347054 | 10.4625 | G6 | S |
252 | 253 | 0 | 1 | Stead, Mr. William Thomas | male | 62.0 | 0 | 0 | 113514 | 26.55 | C87 | S |
257 | 258 | 1 | 1 | Cherry, Miss. Gladys | female | 30.0 | 0 | 0 | 110152 | 86.5 | B77 | S |
262 | 263 | 0 | 1 | Taussig, Mr. Emil | male | 52.0 | 1 | 1 | 110413 | 79.65 | E67 | S |
263 | 264 | 0 | 1 | Harrison, Mr. William | male | 40.0 | 0 | 0 | 112059 | 0.0 | B94 | S |
268 | 269 | 1 | 1 | Graham, Mrs. William Thompson (Edith Junkins) | female | 58.0 | 0 | 1 | PC 17582 | 153.4625 | C125 | S |
269 | 270 | 1 | 1 | Bissette, Miss. Amelia | female | 35.0 | 0 | 0 | PC 17760 | 135.6333 | C99 | S |
273 | 274 | 0 | 1 | Natsch, Mr. Charles H | male | 37.0 | 0 | 1 | PC 17596 | 29.7 | C118 | C |
275 | 276 | 1 | 1 | Andrews, Miss. Kornelia Theodosia | female | 63.0 | 1 | 0 | 13502 | 77.9583 | D7 | S |
291 | 292 | 1 | 1 | Bishop, Mrs. Dickinson H (Helen Walton) | female | 19.0 | 1 | 0 | 11967 | 91.0792 | B49 | C |
292 | 293 | 0 | 2 | Levy, Mr. Rene Jacques | male | 36.0 | 0 | 0 | SC/Paris 2163 | 12.875 | D | C |
297 | 298 | 0 | 1 | Allison, Miss. Helen Loraine | female | 2.0 | 1 | 2 | 113781 | 151.55 | C22 C26 | S |
299 | 300 | 1 | 1 | Baxter, Mrs. James (Helene DeLaudeniere Chaput) | female | 50.0 | 0 | 1 | PC 17558 | 247.5208 | B58 B60 | C |
305 | 306 | 1 | 1 | Allison, Master. Hudson Trevor | male | 0.92 | 1 | 2 | 113781 | 151.55 | C22 C26 | S |
307 | 308 | 1 | 1 | Penasco y Castellana, Mrs. Victor de Satode (Maria Josefa Perez de Soto y Vallejo) | female | 17.0 | 1 | 0 | PC 17758 | 108.9 | C65 | C |
309 | 310 | 1 | 1 | Francatelli, Miss. Laura Mabel | female | 30.0 | 0 | 0 | PC 17485 | 56.9292 | E36 | C |
310 | 311 | 1 | 1 | Hays, Miss. Margaret Bechstein | female | 24.0 | 0 | 0 | 11767 | 83.1583 | C54 | C |
311 | 312 | 1 | 1 | Ryerson, Miss. Emily Borie | female | 18.0 | 2 | 2 | PC 17608 | 262.375 | B57 B59 B63 B66 | C |
318 | 319 | 1 | 1 | Wick, Miss. Mary Natalie | female | 31.0 | 0 | 2 | 36928 | 164.8667 | C7 | S |
319 | 320 | 1 | 1 | Spedden, Mrs. Frederic Oakley (Margaretta Corning Stone) | female | 40.0 | 1 | 1 | 16966 | 134.5 | E34 | C |
325 | 326 | 1 | 1 | Young, Miss. Marie Grice | female | 36.0 | 0 | 0 | PC 17760 | 135.6333 | C32 | C |
327 | 328 | 1 | 2 | Ball, Mrs. (Ada E Hall) | female | 36.0 | 0 | 0 | 28551 | 13.0 | D | S |
329 | 330 | 1 | 1 | Hippach, Miss. Jean Gertrude | female | 16.0 | 0 | 1 | 111361 | 57.9792 | B18 | C |
331 | 332 | 0 | 1 | Partner, Mr. Austen | male | 45.5 | 0 | 0 | 113043 | 28.5 | C124 | S |
332 | 333 | 0 | 1 | Graham, Mr. George Edward | male | 38.0 | 0 | 1 | PC 17582 | 153.4625 | C91 | S |
336 | 337 | 0 | 1 | Pears, Mr. Thomas Clinton | male | 29.0 | 1 | 0 | 113776 | 66.6 | C2 | S |
337 | 338 | 1 | 1 | Burns, Miss. Elizabeth Margaret | female | 41.0 | 0 | 0 | 16966 | 134.5 | E40 | C |
339 | 340 | 0 | 1 | Blackwell, Mr. Stephen Weart | male | 45.0 | 0 | 0 | 113784 | 35.5 | T | S |
340 | 341 | 1 | 2 | Navratil, Master. Edmond Roger | male | 2.0 | 1 | 1 | 230080 | 26.0 | F2 | S |
341 | 342 | 1 | 1 | Fortune, Miss. Alice Elizabeth | female | 24.0 | 3 | 2 | 19950 | 263.0 | C23 C25 C27 | S |
345 | 346 | 1 | 2 | Brown, Miss. Amelia “Mildred” | female | 24.0 | 0 | 0 | 248733 | 13.0 | F33 | S |
356 | 357 | 1 | 1 | Bowerman, Miss. Elsie Edith | female | 22.0 | 0 | 1 | 113505 | 55.0 | E33 | S |
366 | 367 | 1 | 1 | Warren, Mrs. Frank Manley (Anna Sophia Atkinson) | female | 60.0 | 1 | 0 | 110813 | 75.25 | D37 | C |
369 | 370 | 1 | 1 | Aubart, Mme. Leontine Pauline | female | 24.0 | 0 | 0 | PC 17477 | 69.3 | B35 | C |
370 | 371 | 1 | 1 | Harder, Mr. George Achilles | male | 25.0 | 1 | 0 | 11765 | 55.4417 | E50 | C |
377 | 378 | 0 | 1 | Widener, Mr. Harry Elkins | male | 27.0 | 0 | 2 | 113503 | 211.5 | C82 | C |
390 | 391 | 1 | 1 | Carter, Mr. William Ernest | male | 36.0 | 1 | 2 | 113760 | 120.0 | B96 B98 | S |
393 | 394 | 1 | 1 | Newell, Miss. Marjorie | female | 23.0 | 1 | 0 | 35273 | 113.275 | D36 | C |
394 | 395 | 1 | 3 | Sandstrom, Mrs. Hjalmar (Agnes Charlotta Bengtsson) | female | 24.0 | 0 | 2 | PP 9549 | 16.7 | G6 | S |
412 | 413 | 1 | 1 | Minahan, Miss. Daisy E | female | 33.0 | 1 | 0 | 19928 | 90.0 | C78 | Q |
429 | 430 | 1 | 3 | Pickard, Mr. Berk (Berk Trembisky) | male | 32.0 | 0 | 0 | SOTON/O.Q. 392078 | 8.05 | E10 | S |
430 | 431 | 1 | 1 | Bjornstrom-Steffansson, Mr. Mauritz Hakan | male | 28.0 | 0 | 0 | 110564 | 26.55 | C52 | S |
434 | 435 | 0 | 1 | Silvey, Mr. William Baird | male | 50.0 | 1 | 0 | 13507 | 55.9 | E44 | S |
435 | 436 | 1 | 1 | Carter, Miss. Lucile Polk | female | 14.0 | 1 | 2 | 113760 | 120.0 | B96 B98 | S |
438 | 439 | 0 | 1 | Fortune, Mr. Mark | male | 64.0 | 1 | 4 | 19950 | 263.0 | C23 C25 C27 | S |
445 | 446 | 1 | 1 | Dodge, Master. Washington | male | 4.0 | 0 | 2 | 33638 | 81.8583 | A34 | S |
449 | 450 | 1 | 1 | Peuchen, Major. Arthur Godfrey | male | 52.0 | 0 | 0 | 113786 | 30.5 | C104 | S |
452 | 453 | 0 | 1 | Foreman, Mr. Benjamin Laventall | male | 30.0 | 0 | 0 | 113051 | 27.75 | C111 | C |
453 | 454 | 1 | 1 | Goldenberg, Mr. Samuel L | male | 49.0 | 1 | 0 | 17453 | 89.1042 | C92 | C |
456 | 457 | 0 | 1 | Millet, Mr. Francis Davis | male | 65.0 | 0 | 0 | 13509 | 26.55 | E38 | S |
460 | 461 | 1 | 1 | Anderson, Mr. Harry | male | 48.0 | 0 | 0 | 19952 | 26.55 | E12 | S |
462 | 463 | 0 | 1 | Gee, Mr. Arthur H | male | 47.0 | 0 | 0 | 111320 | 38.5 | E63 | S |
473 | 474 | 1 | 2 | Jerwan, Mrs. Amin S (Marie Marthe Thuillard) | female | 23.0 | 0 | 0 | SC/AH Basle 541 | 13.7917 | D | C |
484 | 485 | 1 | 1 | Bishop, Mr. Dickinson H | male | 25.0 | 1 | 0 | 11967 | 91.0792 | B49 | C |
486 | 487 | 1 | 1 | Hoyt, Mrs. Frederick Maxfield (Jane Anne Forby) | female | 35.0 | 1 | 0 | 19943 | 90.0 | C93 | S |
487 | 488 | 0 | 1 | Kent, Mr. Edward Austin | male | 58.0 | 0 | 0 | 11771 | 29.7 | B37 | C |
492 | 493 | 0 | 1 | Molson, Mr. Harry Markland | male | 55.0 | 0 | 0 | 113787 | 30.5 | C30 | S |
496 | 497 | 1 | 1 | Eustis, Miss. Elizabeth Mussey | female | 54.0 | 1 | 0 | 36947 | 78.2667 | D20 | C |
498 | 499 | 0 | 1 | Allison, Mrs. Hudson J C (Bessie Waldo Daniels) | female | 25.0 | 1 | 2 | 113781 | 151.55 | C22 C26 | S |
504 | 505 | 1 | 1 | Maioni, Miss. Roberta | female | 16.0 | 0 | 0 | 110152 | 86.5 | B79 | S |
505 | 506 | 0 | 1 | Penasco y Castellana, Mr. Victor de Satode | male | 18.0 | 1 | 0 | PC 17758 | 108.9 | C65 | C |
512 | 513 | 1 | 1 | McGough, Mr. James Robert | male | 36.0 | 0 | 0 | PC 17473 | 26.2875 | E25 | S |
515 | 516 | 0 | 1 | Walker, Mr. William Anderson | male | 47.0 | 0 | 0 | 36967 | 34.0208 | D46 | S |
516 | 517 | 1 | 2 | Lemore, Mrs. (Amelia Milley) | female | 34.0 | 0 | 0 | C.A. 34260 | 10.5 | F33 | S |
520 | 521 | 1 | 1 | Perreault, Miss. Anne | female | 30.0 | 0 | 0 | 12749 | 93.5 | B73 | S |
523 | 524 | 1 | 1 | Hippach, Mrs. Louis Albert (Ida Sophia Fischer) | female | 44.0 | 0 | 1 | 111361 | 57.9792 | B18 | C |
536 | 537 | 0 | 1 | Butt, Major. Archibald Willingham | male | 45.0 | 0 | 0 | 113050 | 26.55 | B38 | S |
539 | 540 | 1 | 1 | Frolicher, Miss. Hedwig Margaritha | female | 22.0 | 0 | 2 | 13568 | 49.5 | B39 | C |
540 | 541 | 1 | 1 | Crosby, Miss. Harriet R | female | 36.0 | 0 | 2 | WE/P 5735 | 71.0 | B22 | S |
544 | 545 | 0 | 1 | Douglas, Mr. Walter Donald | male | 50.0 | 1 | 0 | PC 17761 | 106.425 | C86 | C |
550 | 551 | 1 | 1 | Thayer, Mr. John Borland Jr | male | 17.0 | 0 | 2 | 17421 | 110.8833 | C70 | C |
556 | 557 | 1 | 1 | Duff Gordon, Lady. (Lucille Christiana Sutherland) (“Mrs Morgan”) | female | 48.0 | 1 | 0 | 11755 | 39.6 | A16 | C |
558 | 559 | 1 | 1 | Taussig, Mrs. Emil (Tillie Mandelbaum) | female | 39.0 | 1 | 1 | 110413 | 79.65 | E67 | S |
571 | 572 | 1 | 1 | Appleton, Mrs. Edward Dale (Charlotte Lamson) | female | 53.0 | 2 | 0 | 11769 | 51.4792 | C101 | S |
572 | 573 | 1 | 1 | Flynn, Mr. John Irwin (“Irving”) | male | 36.0 | 0 | 0 | PC 17474 | 26.3875 | E25 | S |
577 | 578 | 1 | 1 | Silvey, Mrs. William Baird (Alice Munger) | female | 39.0 | 1 | 0 | 13507 | 55.9 | E44 | S |
581 | 582 | 1 | 1 | Thayer, Mrs. John Borland (Marian Longstreth Morris) | female | 39.0 | 1 | 1 | 17421 | 110.8833 | C68 | C |
583 | 584 | 0 | 1 | Ross, Mr. John Hugo | male | 36.0 | 0 | 0 | 13049 | 40.125 | A10 | C |
585 | 586 | 1 | 1 | Taussig, Miss. Ruth | female | 18.0 | 0 | 2 | 110413 | 79.65 | E68 | S |
587 | 588 | 1 | 1 | Frolicher-Stehli, Mr. Maxmillian | male | 60.0 | 1 | 1 | 13567 | 79.2 | B41 | C |
591 | 592 | 1 | 1 | Stephenson, Mrs. Walter Bertram (Martha Eustis) | female | 52.0 | 1 | 0 | 36947 | 78.2667 | D20 | C |
599 | 600 | 1 | 1 | Duff Gordon, Sir. Cosmo Edmund (“Mr Morgan”) | male | 49.0 | 1 | 0 | PC 17485 | 56.9292 | A20 | C |
609 | 610 | 1 | 1 | Shutes, Miss. Elizabeth W | female | 40.0 | 0 | 0 | PC 17582 | 153.4625 | C125 | S |
618 | 619 | 1 | 2 | Becker, Miss. Marion Louise | female | 4.0 | 2 | 1 | 230136 | 39.0 | F4 | S |
621 | 622 | 1 | 1 | Kimball, Mr. Edwin Nelson Jr | male | 42.0 | 1 | 0 | 11753 | 52.5542 | D19 | S |
625 | 626 | 0 | 1 | Sutton, Mr. Frederick | male | 61.0 | 0 | 0 | 36963 | 32.3208 | D50 | S |
627 | 628 | 1 | 1 | Longley, Miss. Gretchen Fiske | female | 21.0 | 0 | 0 | 13502 | 77.9583 | D9 | S |
630 | 631 | 1 | 1 | Barkworth, Mr. Algernon Henry Wilson | male | 80.0 | 0 | 0 | 27042 | 30.0 | A23 | S |
632 | 633 | 1 | 1 | Stahelin-Maeglin, Dr. Max | male | 32.0 | 0 | 0 | 13214 | 30.5 | B50 | C |
641 | 642 | 1 | 1 | Sagesser, Mlle. Emma | female | 24.0 | 0 | 0 | PC 17477 | 69.3 | B35 | C |
645 | 646 | 1 | 1 | Harper, Mr. Henry Sleeper | male | 48.0 | 1 | 0 | PC 17572 | 76.7292 | D33 | C |
647 | 648 | 1 | 1 | Simonius-Blumer, Col. Oberst Alfons | male | 56.0 | 0 | 0 | 13213 | 35.5 | A26 | C |
659 | 660 | 0 | 1 | Newell, Mr. Arthur Webster | male | 58.0 | 0 | 2 | 35273 | 113.275 | D48 | C |
662 | 663 | 0 | 1 | Colley, Mr. Edward Pomeroy | male | 47.0 | 0 | 0 | 5727 | 25.5875 | E58 | S |
671 | 672 | 0 | 1 | Davidson, Mr. Thornton | male | 31.0 | 1 | 0 | F.C. 12750 | 52.0 | B71 | S |
679 | 680 | 1 | 1 | Cardeza, Mr. Thomas Drake Martinez | male | 36.0 | 0 | 1 | PC 17755 | 512.3292 | B51 B53 B55 | C |
681 | 682 | 1 | 1 | Hassab, Mr. Hammad | male | 27.0 | 0 | 0 | PC 17572 | 76.7292 | D49 | C |
689 | 690 | 1 | 1 | Madill, Miss. Georgette Alexandra | female | 15.0 | 0 | 1 | 24160 | 211.3375 | B5 | S |
690 | 691 | 1 | 1 | Dick, Mr. Albert Adrian | male | 31.0 | 1 | 0 | 17474 | 57.0 | B20 | S |
698 | 699 | 0 | 1 | Thayer, Mr. John Borland | male | 49.0 | 1 | 1 | 17421 | 110.8833 | C68 | C |
699 | 700 | 0 | 3 | Humblen, Mr. Adolf Mathias Nicolai Olsen | male | 42.0 | 0 | 0 | 348121 | 7.65 | F G63 | S |
700 | 701 | 1 | 1 | Astor, Mrs. John Jacob (Madeleine Talmadge Force) | female | 18.0 | 1 | 0 | PC 17757 | 227.525 | C62 C64 | C |
701 | 702 | 1 | 1 | Silverthorne, Mr. Spencer Victor | male | 35.0 | 0 | 0 | PC 17475 | 26.2875 | E24 | S |
707 | 708 | 1 | 1 | Calderhead, Mr. Edward Pennington | male | 42.0 | 0 | 0 | PC 17476 | 26.2875 | E24 | S |
710 | 711 | 1 | 1 | Mayne, Mlle. Berthe Antonine (“Mrs de Villiers”) | female | 24.0 | 0 | 0 | PC 17482 | 49.5042 | C90 | C |
712 | 713 | 1 | 1 | Taylor, Mr. Elmer Zebley | male | 48.0 | 1 | 0 | 19996 | 52.0 | C126 | S |
715 | 716 | 0 | 3 | Soholt, Mr. Peter Andreas Lauritz Andersen | male | 19.0 | 0 | 0 | 348124 | 7.65 | F G73 | S |
716 | 717 | 1 | 1 | Endres, Miss. Caroline Louise | female | 38.0 | 0 | 0 | PC 17757 | 227.525 | C45 | C |
717 | 718 | 1 | 2 | Troutt, Miss. Edwina Celia “Winnie” | female | 27.0 | 0 | 0 | 34218 | 10.5 | E101 | S |
724 | 725 | 1 | 1 | Chambers, Mr. Norman Campbell | male | 27.0 | 1 | 0 | 113806 | 53.1 | E8 | S |
730 | 731 | 1 | 1 | Allen, Miss. Elisabeth Walton | female | 29.0 | 0 | 0 | 24160 | 211.3375 | B5 | S |
737 | 738 | 1 | 1 | Lesurer, Mr. Gustave J | male | 35.0 | 0 | 0 | PC 17755 | 512.3292 | B101 | C |
741 | 742 | 0 | 1 | Cavendish, Mr. Tyrell William | male | 36.0 | 1 | 0 | 19877 | 78.85 | C46 | S |
742 | 743 | 1 | 1 | Ryerson, Miss. Susan Parker “Suzette” | female | 21.0 | 2 | 2 | PC 17608 | 262.375 | B57 B59 B63 B66 | C |
745 | 746 | 0 | 1 | Crosby, Capt. Edward Gifford | male | 70.0 | 1 | 1 | WE/P 5735 | 71.0 | B22 | S |
748 | 749 | 0 | 1 | Marvin, Mr. Daniel Warner | male | 19.0 | 1 | 0 | 113773 | 53.1 | D30 | S |
751 | 752 | 1 | 3 | Moor, Master. Meier | male | 6.0 | 0 | 1 | 392096 | 12.475 | E121 | S |
759 | 760 | 1 | 1 | Rothes, the Countess. of (Lucy Noel Martha Dyer-Edwards) | female | 33.0 | 0 | 0 | 110152 | 86.5 | B77 | S |
763 | 764 | 1 | 1 | Carter, Mrs. William Ernest (Lucile Polk) | female | 36.0 | 1 | 2 | 113760 | 120.0 | B96 B98 | S |
765 | 766 | 1 | 1 | Hogeboom, Mrs. John C (Anna Andrews) | female | 51.0 | 1 | 0 | 13502 | 77.9583 | D11 | S |
772 | 773 | 0 | 2 | Mack, Mrs. (Mary) | female | 57.0 | 0 | 0 | S.O./P.P. 3 | 10.5 | E77 | S |
779 | 780 | 1 | 1 | Robert, Mrs. Edward Scott (Elisabeth Walton McMillan) | female | 43.0 | 0 | 1 | 24160 | 211.3375 | B3 | S |
781 | 782 | 1 | 1 | Dick, Mrs. Albert Adrian (Vera Gillespie) | female | 17.0 | 1 | 0 | 17474 | 57.0 | B20 | S |
782 | 783 | 0 | 1 | Long, Mr. Milton Clyde | male | 29.0 | 0 | 0 | 113501 | 30.0 | D6 | S |
789 | 790 | 0 | 1 | Guggenheim, Mr. Benjamin | male | 46.0 | 0 | 0 | PC 17593 | 79.2 | B82 B84 | C |
796 | 797 | 1 | 1 | Leader, Dr. Alice (Farnham) | female | 49.0 | 0 | 0 | 17465 | 25.9292 | D17 | S |
802 | 803 | 1 | 1 | Carter, Master. William Thornton II | male | 11.0 | 1 | 2 | 113760 | 120.0 | B96 B98 | S |
806 | 807 | 0 | 1 | Andrews, Mr. Thomas Jr | male | 39.0 | 0 | 0 | 112050 | 0.0 | A36 | S |
809 | 810 | 1 | 1 | Chambers, Mrs. Norman Campbell (Bertha Griggs) | female | 33.0 | 1 | 0 | 113806 | 53.1 | E8 | S |
820 | 821 | 1 | 1 | Hays, Mrs. Charles Melville (Clara Jennings Gregg) | female | 52.0 | 1 | 1 | 12749 | 93.5 | B69 | S |
823 | 824 | 1 | 3 | Moor, Mrs. (Beila) | female | 27.0 | 0 | 1 | 392096 | 12.475 | E121 | S |
835 | 836 | 1 | 1 | Compton, Miss. Sara Rebecca | female | 39.0 | 1 | 1 | PC 17756 | 83.1583 | E49 | C |
853 | 854 | 1 | 1 | Lines, Miss. Mary Conover | female | 16.0 | 0 | 1 | PC 17592 | 39.4 | D28 | S |
857 | 858 | 1 | 1 | Daly, Mr. Peter Denis | male | 51.0 | 0 | 0 | 113055 | 26.55 | E17 | S |
862 | 863 | 1 | 1 | Swift, Mrs. Frederick Joel (Margaret Welles Barron) | female | 48.0 | 0 | 0 | 17466 | 25.9292 | D17 | S |
867 | 868 | 0 | 1 | Roebling, Mr. Washington Augustus II | male | 31.0 | 0 | 0 | PC 17590 | 50.4958 | A24 | S |
871 | 872 | 1 | 1 | Beckwith, Mrs. Richard Leonard (Sallie Monypeny) | female | 47.0 | 1 | 1 | 11751 | 52.5542 | D35 | S |
872 | 873 | 0 | 1 | Carlsson, Mr. Frans Olof | male | 33.0 | 0 | 0 | 695 | 5.0 | B51 B53 B55 | S |
879 | 880 | 1 | 1 | Potter, Mrs. Thomas Jr (Lily Alexenia Wilson) | female | 56.0 | 0 | 1 | 11767 | 83.1583 | C50 | C |
887 | 888 | 1 | 1 | Graham, Miss. Margaret Edith | female | 19.0 | 0 | 0 | 112053 | 30.0 | B42 | S |
889 | 890 | 1 | 1 | Behr, Mr. Karl Howell | male | 26.0 | 0 | 0 | 111369 | 30.0 | C148 | C |
183 rows × 12 columns
Data sorting
With sort_values() function, we sort values in ascending or descending order.
# Who paid too few
titanic_df.sort_values('Fare').head()
index | PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | Age_squared |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
806 | 807 | 0 | 1 | Andrews, Mr. Thomas Jr | NaN | 39.0 | 0 | 0 | 112050 | 0.0 | A36 | S | 1521.0 |
263 | 264 | 0 | 1 | Harrison, Mr. William | NaN | 40.0 | 0 | 0 | 112059 | 0.0 | B94 | S | 1600.0 |
872 | 873 | 0 | 1 | Carlsson, Mr. Frans Olof | NaN | 33.0 | 0 | 0 | 695 | 5.0 | B51 B53 B55 | S | 1089.0 |
715 | 716 | 0 | 3 | Soholt, Mr. Peter Andreas Lauritz Andersen | NaN | 19.0 | 0 | 0 | 348124 | 7.65 | F G73 | S | 361.0 |
699 | 700 | 0 | 3 | Humblen, Mr. Adolf Mathias Nicolai Olsen | NaN | 42.0 | 0 | 0 | 348121 | 7.65 | F G63 | S | 1764.0 |
# Who paid too much
titanic_df.sort_values('Fare', ascending=False).head()
index | PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | Age_squared |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
737 | 738 | 1 | 1 | Lesurer, Mr. Gustave J | NaN | 35.0 | 0 | 0 | PC 17755 | 512.3292 | B101 | C | 1225.0 |
679 | 680 | 1 | 1 | Cardeza, Mr. Thomas Drake Martinez | NaN | 36.0 | 0 | 1 | PC 17755 | 512.3292 | B51 B53 B55 | C | 1296.0 |
88 | 89 | 1 | 1 | Fortune, Miss. Mabel Helen | NaN | 23.0 | 3 | 2 | 19950 | 263.0 | C23 C25 C27 | S | 529.0 |
27 | 28 | 0 | 1 | Fortune, Mr. Charles Alexander | NaN | 19.0 | 3 | 2 | 19950 | 263.0 | C23 C25 C27 | S | 361.0 |
438 | 439 | 0 | 1 | Fortune, Mr. Mark | NaN | 64.0 | 1 | 4 | 19950 | 263.0 | C23 C25 C27 | S | 4096.0 |
Data Transformation
Pandas provides a wide range of data transformation functions, such as encoding, scaling, and normalization, which can be used to prepare the data for analysis.
For instance, the map function is used to apply a function or mapping to each element in a Pandas Series (i.e., a single column of a DataFrame). In the example above, the map function converts the strings in the ‘Sex’ column to numeric values (0 for ‘male’ and 1 for ‘female’).
# Use the map function to convert the 'Sex' column to a numeric value
titanic_df['Sex'] = titanic_df['Sex'].map({'male': 0, 'female': 1})
titanic_df['Sex'][:10]
1 1 3 1 6 0 10 1 11 1 21 0 23 0 27 0 52 1 54 0 Name: Sex, dtype: int64
Visualising data
The pyplot is a module in the matplotlib library in Python that provides functions for creating various plots and charts. It offers a simple, procedural interface to the underlying object-oriented plotting library in matplotlib. It provides functions for creating graphs, such as line plots, scatter plots, histograms, and bar charts, and for customizing the appearance of the plots, such as setting the axis labels, titles, and legends. It is often used with other data visualization libraries such as pandas and seaborn.
Bar plots
For instance, a Bar plot of the number of survivors by class can be created using the bar method of the plot function in Pandas. It can help to identify any differences in survival rates between the different classes.
Notice how the groupby function is used to group the data by class. The sum function calculates the number of survivors in each class. The plot.bar() method is then used to create the bar plot, and the title(), xlabel(), and ylabel() functions are used to add a title and labels to the plot. Finally, the show function is used to display the plot. To arrange the bars in a bar plot by their values, you can use the sort_values function before creating the plot.
import matplotlib.pyplot as plt
# Load the Titanic dataset
# titanic_df = pd.read_csv('titanic.csv')
# Group the data by class and calculate the number of survivors in each class
survival_by_class = titanic_df.groupby('Pclass')['Survived'].sum()
# Sort the values by the number of survivors
survival_by_class = survival_by_class.sort_values()
# Create a bar plot of the number of survivors by class
survival_by_class.plot.bar()
# Add a title and labels to the plot
plt.title('Number of survivors by class')
plt.xlabel('Class')
plt.ylabel('Number of survivors')
# Show the plot
plt.show()
This will create a bar plot showing the number of survivors by class, with the bars arranged in ascending order by the number of survivors.
Scatter plots
The scatter plot of age vs. fare plot can be created using the scatter method of the plot function in Pandas, and it can help identify any relationships between these two variables.
import pandas as pd
# Create a scatter plot of age vs fare
titanic_df.plot.scatter(x='Age', y='Fare')
# Add a title and labels to the plot
plt.title('Age vs Fare')
plt.xlabel('Age')
plt.ylabel('Fare')
# Show the plot
plt.show()
This will create a scatter plot showing the relationship between age and fare paid. The plot.scatter() method is used to create the scatter plot. Finally, the show() function is used to display the plot.
To color the dots in the scatter plot based on the values in a column, you will need to use a scatterplot function from the seaborn library rather than the scatter function from Pandas. Here is an example of how to do this:
import seaborn as sns
sns.scatterplot(x='Age', y='Fare', hue='Sex', data=titanic_df)
# Add a title and labels to the plot
plt.title('Age vs Fare')
plt.xlabel('Age')
plt.ylabel('Fare')
# Show the plot
plt.show()
This will create a scatter plot showing the relationship between age and fare paid, with the dots colored red for females and blue for males. The hue parameter is used to specify the column to use for the colors.
Histograms
The histogram of the age plot can be created using the hist method of the plot function in Pandas, and it can help visualize the age distribution among the passengers.
To create a histogram of the ages of the passengers using the Pandas library, you can use the hist method of the plot function. Here is an example of how to do this:
# Create a histogram of the ages of the passengers
titanic_df['Age'].plot.hist()
# Add a title and labels to the plot
plt.title('Age distribution of passengers')
plt.xlabel('Age')
plt.ylabel('Number of passengers')
# Show the plot
plt.show()
This will create a histogram showing the distribution of ages among the passengers. The plot.hist() method is used to create the histogram
Box plots
The box plot of fare by class can be created using the box method of the plot function in Pandas. It can help identify differences in fares paid between the different passenger classes.
To create a box plot of the fare paid by class using the Pandas library, you can use the box method of the plot function.
# Create a box plot of the fare by class
titanic_df.boxplot(column='Fare', by='Pclass')
# Add a title and labels to the plot
plt.title('Fare by class')
plt.xlabel('Class')
plt.ylabel('Fare')
# Show the plot
plt.show()
This will create a box plot showing the distribution of fare paid by class. The boxplot function is used to create the box plot.
Heatmaps
The heatmap of survival by class and gender plot can be created using the heatmap function from the seaborn library, and it can help identify any patterns in survival rates by class and gender.
Here is an example of how to create a heatmap using the seaborn library to visualize patterns in survival rates by class and gender. Notice that we did not encode the gender column in this code.
# Draw a heatmap function from the seaborn library to identify patterns in survival rates by class and gender.
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
# Load the Titanic dataset
# titanic_df = pd.read_csv('titanic.csv')
# Pivot the data to create a survival rate by class and gender
pivoted = titanic_df.pivot_table(index='Pclass', columns='Sex', values='Survived', aggfunc='mean')
# Create a heatmap of the survival rate by class and gender
sns.heatmap(pivoted, cmap='Reds')
# Add a title and labels to the plot
plt.title('Survival rate by class and gender')
plt.xlabel('Gender')
plt.ylabel('Class')
# Show the plot
plt.show()
This will create a heatmap showing the survival rate by class and gender. The pivot_table function is used to pivot the data and create a survival rate by class and gender, and the heatmap function is used to generate the plot. The cmap parameter is used to specify the color map.
What about data analysis?
Excuse me? What is about the data analysis? The Pandas features above are mostly related to data exploration. Can you pinpoint the Python Pandas features related strictly to the data analysis and not to data exploration?
Yes, many of the features I listed earlier are related to data exploration, which is a step of the data analysis process. Here are some additional features of Pandas that are more specifically related to data analysis.
Statistical Analysis
Descriptive statistics
Pandas provides a wide range of statistical functions, such as mean, median, sum, and standard deviation, that can be applied to the data to gain insights into the underlying patterns and trends.
Besides using those above describe() function encompassing the statistical functions performed on the whole dataframe to calculate the mean, median, sum, standard deviation, min, and max of the fare column of the dataset:
# Calculate Mean
print(titanic_df['Fare'].mean())
# Calculate Median
print(titanic_df['Fare'].median())
# Calculate Sum
print(titanic_df['Fare'].sum())
# Calculate Standard Deviation
print(titanic_df['Fare'].std())
# Calculate the minimum value
print(titanic_df['Fare'].min())
# Calculate the maximum value
print(titanic_df['Fare'].max())
32.204207968574636 14.4542 28693.9493 49.6934285971809 0.0 512.3292
Correlation
Pandas provides functions to calculate correlation between columns of a DataFrame, which can be used to identify relationships between variables.
To calculate the correlation between fare and age columns:
correlation = titanic_df['Fare'].corr(titanic_df['Age'])
print(correlation)
0.09606669176903888
Moreover, other Python libraries, such as Scipy, provide various statistical tools to perform hypothesis testing, such as the Chi-squared test, t-test, and ANOVA, which can be used to make inferences about the data.
Data Aggregation
Pandas provides a wide range of data aggregation functions, such as groupby(), pivot_table(), and crosstab(), which can be used to summarize large datasets and extract insights from the data. These features are not exclusive to data exploration and are more related to data analysis itself and can assist in drawing inferences, making predictions, and discovering patterns from the data.
Before summarising or grouping data, it is helpful to see the list of columns in the dataframe.
titanic_df.columns
Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'], dtype='object')
Data Grouping
Pandas’ groupby() function allows you to group data by one or more columns and then perform aggregate functions on the groups, such as sum, mean, and count, which is helpful for data analysis tasks. For instance, to group data by the class column and calculate the mean fare for each class:
grouped = titanic_df.groupby(by='Pclass')['Fare'].mean()
print(grouped)
Pclass 1 88.683228 2 18.444447 3 11.027500 Name: Fare, dtype: float64
Pivot Tables
Pivot tables in Pandas are similar to the groupby() functionality but allow more flexibility while returning a dataframe. Pivot tables can help summarise data with the function pd.pivot_table(). The parameter “data” takes in the input dataframe. When provided with “values,” it aggregates on the specified column, “index” and “columns” are to define a column or a list of columns to group the data, “aggfunc” is a function or list of functions to aggregate the data, “fill_value” is the value to fill in the missing values, the “margins” is when we want to add a row and a column for total values (the name is defined by the “margins_name” parameter), “dropna” is True when we want to exclude the NaN (missing values), “observed” is to show the categorical data groups, and “sort” True is for sorting the result.
For instance, we can summarise our titanic dataset to count the number of surviving passengers by their passenger class, and gender and calculate the mean fare for each passenger group.
pd.pivot_table(
data=titanic_df,
values="Fare",
index=["Pclass", "Sex"],
columns=["Survived"],
aggfunc=["count", "mean"],
fill_value=None,
margins=True,
dropna=True,
margins_name='All',
observed=False,
sort=True
)
Pclass | Sex | count, 0 | count, 1 | count, All | mean, 0 | mean, 1 | mean, All |
---|---|---|---|---|---|---|---|
1 | female | 3 | 91 | 94 | 110.60 | 105.98 | 106.13 |
1 | male | 77 | 45 | 122 | 62.89 | 74.64 | 67.23 |
2 | female | 6 | 70 | 76 | 18.25 | 22.29 | 21.97 |
2 | male | 91 | 17 | 108 | 19.49 | 21.10 | 19.74 |
3 | female | 72 | 72 | 144 | 19.77 | 12.46 | 16.12 |
3 | male | 300 | 47 | 347 | 12.20 | 15.58 | 12.66 |
All | 549 | 342 | 891 | 22.12 | 48.40 | 32.20 |
Using Crosstab
The crosstab() function in Pandas is similar in its functionality to the pivot_table() and allows summarising data. Additionally, we can normalise the result values. For instance, we can get a normalised break down of the titanic dataset by the passenger class and their survival.
summarised_table = pd.crosstab(titanic_df['Survived'], titanic_df['Pclass'], normalize=True)
print(summarised_table)
Pclass 1 2 3 Survived 0 0.09 0.11 0.42 1 0.15 0.10 0.13
Machine Learning
Machine learning is a subset of data analysis and is often considered a part of the data analysis process. Machine learning teaches computers to learn from data without being explicitly programmed. It involves using algorithms to analyze data, learn from it, and make predictions or decisions without human intervention. The Titanic dataset, while relatively small, contains a good amount of information, and it’s considered an excellent dataset to start learning machine learning. In my next blog post, I will go through the application of ML using the Titanic dataset. It will be simple and fun! Stay tuned.
Conclusion
Pandas is a library for data manipulation and analysis in Python. It provides data structures and functions for working with structured data, including data frames (similar to tables in a relational database) and series (similar to arrays). It is commonly used for data exploration, cleaning, and transformation. We have seen how to use Pandas to analyse and visualise the Titanic dataset. I hope this helps! Let me know if you have any questions.
In my next post, I will do more in-depth machine-learning experiments to predict the survival odds of Titanic passengers.
Did you like this post? Please let me know if you have any comments or suggestions.
Python posts that might be interesting for youDisclaimer: I have used chatGPT while preparing this post. This is why I have listed the chatGPT in my references section. However, most of the text is rewritten by me, as a human, and spell-checked with Grammarly. All code snippets were tested in the Google Colab, and available in my GitHub repository
References
About Elena Elena, a PhD in Computer Science, simplifies AI concepts and helps you use machine learning.
|